cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A258276 Balanced sphenic numbers (of order one): sphenic numbers (A007304) that are the average of the previous sphenic number and the following sphenic number.

Original entry on oeis.org

186, 370, 406, 418, 518, 582, 602, 710, 786, 814, 826, 830, 942, 978, 994, 1010, 1034, 1070, 1162, 1310, 1374, 1394, 1570, 1630, 1686, 1758, 1886, 1978, 2014, 2114, 2158, 2270, 2274, 2278, 2294, 2438, 2510, 2534, 2570, 2630, 2666, 2690, 2774, 2778, 2782, 2806
Offset: 1

Views

Author

Antonio Roldán, May 25 2015

Keywords

Examples

			406 is in this sequence because 406 = A007304(45) = (402+410)/2 = (A007304(44) + A007304(46))/2.
		

Crossrefs

Programs

  • Mathematica
    a=30; b=42; c=66; L={}; While[ Length[L]<100, If[b-a == c-b, AppendTo[L, b]]; a=b; b=c++; While[ Last/@ FactorInteger[c] != {1,1,1}, c++]]; L (* Giovanni Resta, Jun 09 2015 *)
  • PARI
    issphenic(n)=if(n>0,omega(n)==3&&bigomega(n)==3,0)
    nextsph(n)={local(k=n+1);while(!issphenic(k),k+=1);k}
    precsph(n)={local(k=n-1);while(!issphenic(k)&&k>0,k-=1);k}
    {for(i=1,4*10^3,if(issphenic(i)&&2*i== nextsph(i)+ precsph(i),print1(i, ", ")))}

A245589 Primes which are the average of the two adjacent primes and also of the two adjacent squarefree numbers.

Original entry on oeis.org

53, 593, 1747, 2287, 4013, 4409, 5563, 6317, 8117, 10657, 10853, 11933, 12547, 12583, 12653, 15161, 16937, 17047, 17851, 18341, 19603, 19949, 20107, 22051, 26693, 31051, 32993, 35851, 35911, 39113, 42209, 42533, 44041, 46889, 47527, 48259, 50417, 51461
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 26 2014

Keywords

Comments

Intersection of A006562 and A240475. Intersection of A006562 and A245289.

Examples

			53 is in this sequence because 53 = prime(16) = (prime(15) + prime(17))/2 = (47 + 59)/2 and 53 = squarefree(33) = (squarefree(32) + squarefree(34))/2 = (51 + 55)/2.
		

Crossrefs

Programs

  • Maple
    Primes:= select(isprime,[$1..10^5]):
    Sqfree:= select(numtheory:-issqrfree,[$1..10^5]):
    A:= NULL:
    for i from 2 to nops(Primes)-1 do
       if Primes[i] = (Primes[i+1]+Primes[i-1])/2 then
          member(Primes[i],Sqfree,'j');
          if Primes[i] = (Sqfree[j-1]+Sqfree[j+1])/2 then
             A:= A,Primes[i]
          fi
       fi
    od:
    A; # Robert Israel, Aug 21 2014
  • PARI
    maxp=60000;
    p=[]; my(v=primes(maxp)); for(k=2, #v-1, if(2*v[k] == v[k-1]+v[k+1], p=concat(p, v[k]))); p;
    v = select(n->issquarefree(n), vector(maxp, n, n));
    s=[]; for(k=2, #v-1, if(2*v[k] == v[k-1]+v[k+1], s=concat(s, v[k]))); s;
    setintersect(p, s) \\ Colin Barker, Aug 07 2014

Extensions

Missing term (16937) inserted by Colin Barker, Aug 07 2014
Showing 1-2 of 2 results.