cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245377 Number of 2-alternating permutations of 1,2,...,n, that is, a(n) is the number of down/up permutations (A000111) of 1,2,...,n such that any two consecutive terms differ by at least two.

Original entry on oeis.org

1, 1, 0, 0, 1, 4, 17, 80, 422, 2480, 16095, 114432, 884969, 7398464, 66502048, 639653632, 6556170841, 71340409600, 821408397105, 9977630263296, 127518757153174, 1710576547456000, 24030971882538671, 352843606806499328
Offset: 0

Views

Author

Richard Stanley, Jul 19 2014

Keywords

Examples

			For n=5 there are the four permutations 31425, 31524, 52413, 42513.
		

Crossrefs

Cf. A002464.

Programs

  • Maple
    b:= proc(n, s, t) option remember; `if`(s={}, 1, add(
         `if`(t*(n-j)>=2, b(j, s minus{j}, -t), 0), j=s))
        end:
    a:= n->`if`(n=0, 1, add(b(j, {$1..j-1, $j+1..n}, 1), j=1..n)):
    seq(a(n), n=0..16);  # Alois P. Heinz, Oct 27 2014
  • Mathematica
    b[n_, s_, t_] := b[n, s, t] = If[s == {}, 1, Sum[If[t*(n - j) >= 2, b[j, s ~Complement~ {j}, -t], 0], {j, s}]]; a[n_] := a[n] = If[n == 0, 1, Sum[b[j, DeleteCases[Range[n], j], 1], {j, 1, n}]]; Table[Print[a[n]]; a[n], {n, 0, 16}] (* Jean-François Alcover, Oct 24 2016, after Alois P. Heinz *)

Extensions

a(11)-a(15) from R. J. Mathar, Oct 27 2014
a(16)-a(21) from Alois P. Heinz, Oct 27 2014
a(22) from Alois P. Heinz, Feb 18 2024
a(23) from Max Alekseyev, Feb 19 2024