A245383 Numbers n whose product of decimal digits is a semiprime.
4, 6, 9, 14, 16, 19, 22, 23, 25, 27, 32, 33, 35, 37, 41, 52, 53, 55, 57, 61, 72, 73, 75, 77, 91, 114, 116, 119, 122, 123, 125, 127, 132, 133, 135, 137, 141, 152, 153, 155, 157, 161, 172, 173, 175, 177, 191, 212, 213, 215, 217, 221, 231, 251, 271, 312, 313, 315
Offset: 1
Examples
217 is in the sequence because 2 * 1 * 7 = 14 = 2 * 7 which is a semiprime. 312 is in the sequence because 3 * 1 * 2 = 6 = 2 * 3 which is a semiprime.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..1452
Programs
-
Maple
dmax:= 4: # to get all terms with up to d digits A:= NULL: for d from 1 to dmax do for j from 1 to d do for xj in [4,6,9] do A:= A,(10^d-1)/9 + (xj-1)*10^(j-1); od od: for ij in combinat[choose](d,2) do for xi in [2,3,5,7] do for xj in [2,3,5,7] do A:= A,(10^d-1)/9 + (xi-1)*10^(ij[1]-1) + (xj-1)*10^(ij[2]-1); od od od: od: {A}; # Robert Israel, Jul 20 2014
-
Mathematica
Select[Range[500], PrimeOmega[(Times @@ IntegerDigits[#])] == 2 &]
-
PARI
f(n,b,d) = if(d, for(i=1, 9, if(b+bigomega(i)<=2, f(10*n+i, b+bigomega(i), d-1))), if(b==2, print1(n", "))) for(d=1, 4, f(0,0,d)) \\ f(0,0,d) prints d-digit terms. Jens Kruse Andersen, Jul 21 2014
Comments