A245396 Largest prime not exceeding prime(n)^(1 + 1/n).
3, 5, 7, 11, 17, 19, 23, 23, 31, 37, 41, 47, 53, 53, 59, 67, 73, 73, 83, 83, 89, 89, 97, 107, 113, 113, 113, 113, 127, 131, 139, 151, 157, 157, 167, 173, 179, 181, 181, 193, 199, 199, 211, 211, 211, 223, 233, 241, 251, 251, 257, 263, 263, 277, 283, 283, 293, 293, 293, 307, 307, 317, 331, 337
Offset: 1
Keywords
Links
- A. Kourbatov, Verification of the Firoozbakht conjecture for primes up to four quintillion, arXiv:1503.01744 [math.NT], 2015
- A. Kourbatov, Upper bounds for prime gaps related to Firoozbakht's conjecture, J. Int. Seq. 18 (2015) 15.11.2
- Nilotpal Kanti Sinha, On a new property of primes that leads to a generalization of Cramer's conjecture, arXiv:1010.1399 [math.NT]
- Wikipedia, Firoozbakht's conjecture
Programs
-
Haskell
a245396 n = a244365 n (a182134 n) -- Reinhard Zumkeller, Nov 16 2014
-
Maple
seq(prevprime(ceil(ithprime(n)^(1+1/n))),n=1..100); # Robert Israel, Nov 03 2014
-
Mathematica
Table[NextPrime[Prime[n]^(1 + 1/n), -1], {n, 64}] (* Farideh Firoozbakht, Nov 03 2014 *)
-
PARI
a(n)=precprime(prime(n)^(1+1/n))
-
PARI
a(n)=precprime(sqrtnint(prime(n)^(n+1),n)) \\ Charles R Greathouse IV, Oct 29 2018
Comments