cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245398 Sum of n-th powers of coefficients in full expansion of (z_1 + z_2 + ... + z_n)^n.

Original entry on oeis.org

1, 1, 6, 381, 591460, 41262262505, 207874071367118436, 110807909819808911886548575, 8558639841332633529404511878004186120, 124773193097402414339622625011223384066643153613969, 431220070110830123225191271755402469908417673177630594034899052340
Offset: 0

Views

Author

Alois P. Heinz, Jul 21 2014

Keywords

Crossrefs

Main diagonal of A245397.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or i=1, 1,
          add(b(n-j, i-1, k)*binomial(n, j)^k, j=0..n))
        end:
    a:= n-> b(n$3):
    seq(a(n), n=0..12);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0,
       Sum[b[n-j, i-1, k]*Binomial[n, j]^(k-1)/j!, {j, 0, n}]]];
    a[n_] := n!*b[n, n, n];
    Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Jun 27 2022, after Alois P. Heinz *)

Formula

a(n) = [x^n] (n!)^n * (Sum_{j=0..n} x^j/(j!)^n)^n.
a(n) = A245397(n,n).