cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A245397 A(n,k) is the sum of k-th powers of coefficients in full expansion of (z_1+z_2+...+z_n)^n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 4, 10, 1, 1, 6, 27, 35, 1, 1, 10, 93, 256, 126, 1, 1, 18, 381, 2716, 3125, 462, 1, 1, 34, 1785, 36628, 127905, 46656, 1716, 1, 1, 66, 9237, 591460, 7120505, 8848236, 823543, 6435, 1, 1, 130, 51033, 11007556, 495872505, 2443835736, 844691407, 16777216, 24310
Offset: 0

Views

Author

Alois P. Heinz, Jul 21 2014

Keywords

Examples

			A(3,2) = 93: (z1+z2+z3)^3 = z1^3 +3*z1^2*z2 +3*z1^2*z3 +3*z1*z2^2 +6*z1*z2*z3 +3*z1*z3^2 +z2^3 +3*z2^2*z3 +3*z2*z3^2 +z3^3 => 1^2+3^2+3^2+3^2+6^2+3^2+1^2+3^2+3^2+1^2 = 93.
Square array A(n,k) begins:
0 :    1,    1,      1,       1,         1,           1, ...
1 :    1,    1,      1,       1,         1,           1, ...
2 :    3,    4,      6,      10,        18,          34, ...
3 :   10,   27,     93,     381,      1785,        9237, ...
4 :   35,  256,   2716,   36628,    591460,    11007556, ...
5 :  126, 3125, 127905, 7120505, 495872505, 41262262505, ...
		

Crossrefs

Columns k=0-10 give: A001700(n-1) for n>0, A000312, A033935, A055733, A055740, A246240, A246241, A246242, A246243, A246244, A246245.
Rows n=0+1, 2 give: A000012, A052548.
Main diagonal gives A245398.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or i=1, 1,
          add(b(n-j, i-1, k)*binomial(n, j)^k, j=0..n))
        end:
    A:= (n, k)-> b(n$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1, 0, Sum[b[n-j, i-1, k] * Binomial[n, j]^(k-1)/j!, {j, 0, n}]]]; A[n_, k_] := n!*b[n, n, k]; Table[ Table[A[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Jan 30 2015, after Alois P. Heinz *)

Formula

A(n,k) = [x^n] (n!)^k * (Sum_{j=0..n} x^j/(j!)^k)^n.

A336666 a(n) = (n!)^n * [x^n] 1 / (Sum_{k>=0} (-x)^k / (k!)^n)^n.

Original entry on oeis.org

1, 1, 10, 1839, 10386076, 2920439606255, 61647526987008365796, 138198647831589723000626151799, 44295532378421071881332203441924537230328, 2630596041328098180368767727753901255310559993154210399, 36407288356000016897632843477214290941136877077516693440464220432175060
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 29 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n!)^n SeriesCoefficient[1/Sum[(-x)^k/(k!)^n, {k, 0, n}]^n, {x, 0, n}], {n, 0, 10}]
Showing 1-2 of 2 results.