A033935
Sum of squares of coefficients in full expansion of (z1+z2+...+zn)^n.
Original entry on oeis.org
1, 1, 6, 93, 2716, 127905, 8848236, 844691407, 106391894904, 17091486402849, 3410496772665940, 827540233598615691, 239946160014513220896, 81932406267721802925925, 32541656017173091541743368, 14874686717916861528415671285, 7753005946480818323895940923376
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
add(b(n-j, i-1)*binomial(n, j)^2, j=0..n))
end:
a:= n-> b(n$2):
seq(a(n), n=0..20); # Alois P. Heinz, Jul 21 2014
A033935:= proc(n) series(hypergeom([],[1],z)^n, z=0, n+1): n!^2*coeff(%,z,n) end: seq(A033935(n), n=0..16); # Peter Luschny, May 31 2017
-
Table[nn=n;n!^2 Coefficient[Series[(Sum[x^k/k!^2,{k,0,nn}])^n,{x,0,nn}],x^n],{n,1,20}] (* Geoffrey Critzer, Apr 19 2014 *)
Flatten[{1,Table[n!^2*Coefficient[Series[BesselI[0,2*Sqrt[x]]^n,{x,0,n}],x^n],{n,1,20}]}] (* Vaclav Kotesovec, Jul 29 2014 *)
Table[SeriesCoefficient[HypergeometricPFQ[{},{1},x]^n, {x,0,n}] n!^2, {n,0,16}] (* Peter Luschny, May 31 2017 *)
A287698
Square array A(n,k) = (n!)^3 [x^n] hypergeom([], [1, 1], z)^k read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 10, 1, 0, 1, 4, 27, 56, 1, 0, 1, 5, 52, 381, 346, 1, 0, 1, 6, 85, 1192, 6219, 2252, 1, 0, 1, 7, 126, 2705, 36628, 111753, 15184, 1, 0, 1, 8, 175, 5136, 124405, 1297504, 2151549, 104960, 1, 0
Offset: 0
Array starts:
k\n| 0 1 2 3 4 5 6 7
---|-------------------------------------------------------------------
k=0| 1, 0, 0, 0, 0, 0, 0, 0, ... A000007
k=1| 1, 1, 1, 1, 1, 1, 1, 1, ... A000012
k=2| 1, 2, 10, 56, 346, 2252, 15184, 104960, ... A000172
k=3| 1, 3, 27, 381, 6219, 111753, 2151549, 43497891, ... A141057
k=4| 1, 4, 52, 1192, 36628, 1297504, 50419096, 2099649808, ... A287699
k=5| 1, 5, 85, 2705, 124405, 7120505, 464011825, 33031599725, ...
k=6| 1, 6, 126, 5136, 316206, 25461756, 2443835736, 263581282656, ...
A001107,A287702,A287700, A287701, A055733
-
A287698_row := (k, len) -> seq(A287696_poly(j)(k), j=0..len):
A287698_row := proc(k, len) hypergeom([], [1, 1], x):
series(%^k, x, len); seq((i!)^3*coeff(%, x, i), i=0..len-1) end:
for k from 0 to 6 do A287698_row(k, 9) od;
A287698_col := proc(n, len) local k, x; hypergeom([], [1, 1], z);
series(%^x, z=0, n+1): unapply(n!^3*coeff(%, z, n), x); seq(%(j), j=0..len) end:
for n from 0 to 7 do A287698_col(n, 9) od;
-
Table[Table[SeriesCoefficient[HypergeometricPFQ[{},{1,1},x]^k, {x, 0, n}] (n!)^3, {n, 0, 6}], {k, 0, 9}] (* as a table of rows *)
A055733
Sum of third powers of coefficients in full expansion of (z1+z2+...+zn)^n.
Original entry on oeis.org
1, 1, 10, 381, 36628, 7120505, 2443835736, 1351396969615, 1127288317316008, 1349611750487720817, 2230372438317527996620, 4930842713588476723120511, 14211567663513739084746570600, 52259895270824126097423028107277, 240736564755509319272061470644316416
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-j, i-1)*binomial(n, j)^2/j!, j=0..n)))
end:
a:= n-> n!*b(n$2):
seq(a(n), n=0..20); # Alois P. Heinz, Jul 21 2014
A055733 := proc(n) series(hypergeom([],[1,1],z)^n,z=0,n+1): n!^3*coeff(%,z,n) end: seq(A055733(n), n=0..14); # Peter Luschny, May 31 2017
-
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[b[n-j, i-1]*Binomial[n, j]^2 / j!, {j, 0, n}]]]; a[n_] := n!*b[n, n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 24 2015, after Alois P. Heinz *)
Table[SeriesCoefficient[HypergeometricPFQ[{}, {1,1}, x]^n, {x,0,n}] n!^3, {n,0,14}] (* Peter Luschny, May 31 2017 *)
A245398
Sum of n-th powers of coefficients in full expansion of (z_1 + z_2 + ... + z_n)^n.
Original entry on oeis.org
1, 1, 6, 381, 591460, 41262262505, 207874071367118436, 110807909819808911886548575, 8558639841332633529404511878004186120, 124773193097402414339622625011223384066643153613969, 431220070110830123225191271755402469908417673177630594034899052340
Offset: 0
-
b:= proc(n, i, k) option remember; `if`(n=0 or i=1, 1,
add(b(n-j, i-1, k)*binomial(n, j)^k, j=0..n))
end:
a:= n-> b(n$3):
seq(a(n), n=0..12);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0,
Sum[b[n-j, i-1, k]*Binomial[n, j]^(k-1)/j!, {j, 0, n}]]];
a[n_] := n!*b[n, n, n];
Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Jun 27 2022, after Alois P. Heinz *)
A055740
Sum of fourth powers of coefficients in full expansion of (z1+z2+...+zn)^n.
Original entry on oeis.org
1, 1, 18, 1785, 591460, 495872505, 882463317636, 2956241639184631, 17088644286346128840, 159584255348964655673745, 2286523844910576580400966980, 48220116744252542032928364578451, 1446485887751234540636003724054342864, 59981372975740557234356339667492583487125
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-j, i-1)*binomial(n, j)^3/j!, j=0..n)))
end:
a:= n-> n!*b(n$2):
seq(a(n), n=0..20); # Alois P. Heinz, Jul 21 2014
-
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[b[n-j, i-1]*Binomial[n, j]^3 /j!, {j, 0, n}]]]; a[n_] := n!*b[n, n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 24 2015, after Alois P. Heinz *)
A246240
Sum of fifth powers of coefficients in full expansion of (z_1+z_2+...+z_n)^n.
Original entry on oeis.org
1, 1, 34, 9237, 11007556, 41262262505, 393602334214536, 8250608306349317503, 341379009411431516029576, 25693424488177173143564108049, 3298778490446719483156753593432700, 686045693667123232536420797701863401231, 221475400673152122602874526565943771742514376
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-j, i-1)*binomial(n, j)^4/j!, j=0..n)))
end:
a:= n-> n!*b(n$2):
seq(a(n), n=0..15);
A246241
Sum of sixth powers of coefficients in full expansion of (z_1+z_2+...+z_n)^n.
Original entry on oeis.org
1, 1, 66, 51033, 227263876, 3942914312505, 207874071367118436, 28034487027123336138967, 8522964991458712709499563784, 5302659152501095787067079018931409, 6255441983177258421672575234559926069140, 13154762734940720943667470423246456789300752691
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-j, i-1)*binomial(n, j)^5/j!, j=0..n)))
end:
a:= n-> n!*b(n$2):
seq(a(n), n=0..15);
A246242
Sum of seventh powers of coefficients in full expansion of (z_1+z_2+...+z_n)^n.
Original entry on oeis.org
1, 1, 130, 293061, 5018329348, 414999981562505, 124389170238814179336, 110807909819808911886548575, 253626563859350391170222920686088, 1334380576777390115212093953972864348177, 14777734823564325121187478504310896072495827020
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-j, i-1)*binomial(n, j)^6/j!, j=0..n)))
end:
a:= n-> n!*b(n$2):
seq(a(n), n=0..15);
A246243
Sum of eighth powers of coefficients in full expansion of (z_1+z_2+...+z_n)^n.
Original entry on oeis.org
1, 1, 258, 1718985, 115245958660, 46377854607812505, 80785609177262537107236, 486005483266096999009285275991, 8558639841332633529404511878004186120, 388791577542234912413815089860741309780872785, 41231194444310047390596429351583294775856761836687780
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-j, i-1)*binomial(n, j)^7/j!, j=0..n)))
end:
a:= n-> n!*b(n$2):
seq(a(n), n=0..15);
A246244
Sum of ninth powers of coefficients in full expansion of (z_1+z_2+...+z_n)^n.
Original entry on oeis.org
1, 1, 514, 10195797, 2703788516356, 5361940142039062505, 55063667396158825603112136, 2272169230481993564658922073502463, 312894608313254360747865383525129561090056, 124773193097402414339622625011223384066643153613969
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
add(b(n-j, i-1)*binomial(n, j)^9, j=0..n))
end:
a:= n-> b(n$2):
seq(a(n), n=0..15);
Showing 1-10 of 11 results.
Comments