cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245440 Primes p == 1 (mod 4) such that p - floor(sqrt(p))^2 and 2p - floor(sqrt(2p))^2 are not squares.

Original entry on oeis.org

353, 373, 449, 461, 521, 541, 593, 653, 673, 757, 769, 797, 821, 829, 941, 953, 1009, 1021, 1061, 1069, 1097, 1193, 1217, 1237, 1249, 1277, 1361, 1381, 1481, 1489, 1549, 1597, 1613, 1621, 1657, 1669, 1693, 1709, 1721, 1733, 1777, 1801, 1877, 1889, 1933, 1949
Offset: 1

Views

Author

Thomas Ordowski, Jul 22 2014

Keywords

Comments

Primes p of the form 4k+1 such that A053610(p) > 2 and A053610(2p) > 2.
Note that p = a^2 + b^2 and 2p = (a+b)^2 + (a-b)^2 is the only way. So according to the definition the greedy algorithm cannot give such the sums of two squares.
Interesting fact: a(n) = A145023(n) for all n < 25. Of course A145023 is a subsequence.
Primes p == 1 (mod 4) such that A245474(p) > 2.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(10000) | p mod 4 eq 1 and not IsSquare(p-Floor(Sqrt(p))^2) and not IsSquare(2*p-Floor(Sqrt(2*p))^2)]; // Vincenzo Librandi, Sep 19 2017
  • Mathematica
    a245440Q[n_Integer] := If[
      And[PrimeQ[n] == True, Mod[n, 4] == 1],
      If[Or[IntegerQ[Sqrt[n - Floor[Sqrt[n]]^2]] == True,
        IntegerQ[Sqrt[2*n - Floor[Sqrt[2*n]]^2]] == True], False, True],
      False]; a245440[n_Integer] :=
    Flatten[Position[Thread[a245440Q[Range[n]]],
       True]]; a245440[300000]; (* Michael De Vlieger, Aug 05 2014 *)
  • PARI
    s=[]; forprime(p=2, 3000, if(p%4==1 && !issquare(p-floor(sqrt(p))^2) && !issquare(2*p-floor(sqrt(2*p))^2), s=concat(s, p))); s \\ Colin Barker, Jul 22 2014
    

Extensions

More terms from Colin Barker, Jul 22 2014