A245440 Primes p == 1 (mod 4) such that p - floor(sqrt(p))^2 and 2p - floor(sqrt(2p))^2 are not squares.
353, 373, 449, 461, 521, 541, 593, 653, 673, 757, 769, 797, 821, 829, 941, 953, 1009, 1021, 1061, 1069, 1097, 1193, 1217, 1237, 1249, 1277, 1361, 1381, 1481, 1489, 1549, 1597, 1613, 1621, 1657, 1669, 1693, 1709, 1721, 1733, 1777, 1801, 1877, 1889, 1933, 1949
Offset: 1
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10461 (first 46 terms from Thomas Ordowski and Colin Barker)
Programs
-
Magma
[p: p in PrimesUpTo(10000) | p mod 4 eq 1 and not IsSquare(p-Floor(Sqrt(p))^2) and not IsSquare(2*p-Floor(Sqrt(2*p))^2)]; // Vincenzo Librandi, Sep 19 2017
-
Mathematica
a245440Q[n_Integer] := If[ And[PrimeQ[n] == True, Mod[n, 4] == 1], If[Or[IntegerQ[Sqrt[n - Floor[Sqrt[n]]^2]] == True, IntegerQ[Sqrt[2*n - Floor[Sqrt[2*n]]^2]] == True], False, True], False]; a245440[n_Integer] := Flatten[Position[Thread[a245440Q[Range[n]]], True]]; a245440[300000]; (* Michael De Vlieger, Aug 05 2014 *)
-
PARI
s=[]; forprime(p=2, 3000, if(p%4==1 && !issquare(p-floor(sqrt(p))^2) && !issquare(2*p-floor(sqrt(2*p))^2), s=concat(s, p))); s \\ Colin Barker, Jul 22 2014
Extensions
More terms from Colin Barker, Jul 22 2014
Comments