cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245441 a(1)=3, then a(n) = smallest odd k > Ceiling(a(n-1)/2) such that k*2^n-1 is prime.

Original entry on oeis.org

3, 3, 3, 3, 7, 17, 13, 27, 25, 15, 25, 23, 21, 15, 9, 17, 15, 21, 51, 35, 19, 33, 25, 39, 57, 57, 81, 45, 45, 213, 111, 57, 31, 131, 99, 83, 45, 27, 25, 107, 55, 33, 33, 35, 67, 141, 91, 89, 69, 41, 129, 89, 147, 101, 195, 129, 79, 77, 45, 77, 69, 53, 61
Offset: 1

Views

Author

Pierre CAMI, Jul 22 2014

Keywords

Comments

A126715(n) = smallest odd k such that k*2^n-1 is prime, the primes are not always in increasing order.
Here the primes k*2^n-1 are always in increasing order.
The ratio sum_{1..N}a(n)/sum_{1..N}n is near 2*log(2) as N increases.
The ratio a(n)/n is always < 8 for n from 1 to 6000.

Examples

			3*2^1-1 = 5 is prime, a(1)=3 by definition.
3*2^2-1 = 11 is prime, 3 > 3/2 so a(2) = 3.
3*2^3-1 = 23 is prime, so a(3) = 3.
3*2^4-1 = 47 is prime, so a(4) = 3.
3*2^5-1 = 95 is composite.
5*2^5-1 = 159 is composite.
7*2^5-1 = 223 is prime so a(5) = 7.
		

Crossrefs

Cf. A126715.

Programs

  • PARI
    a=[3]; for(n=2, 100, k=floor(a[n-1]/2)+2; if(k%2==0, k++); t=2^n; while(!isprime(k*t-1), k+=2); a=concat(a, k)); a \\ Colin Barker, Jul 22 2014