cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245492 Number of compositions of n into parts 3 and 5 with at least one 3 and one 5.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 3, 0, 3, 4, 0, 6, 5, 4, 10, 6, 10, 15, 12, 20, 21, 23, 35, 34, 44, 56, 57, 80, 91, 101, 137, 148, 181, 230, 249, 318, 379, 430, 549, 629, 748, 928, 1060, 1298, 1557, 1809, 2226, 2617, 3109, 3783, 4426, 5336, 6400, 7536, 9120
Offset: 0

Views

Author

David Neil McGrath, Jul 24 2014

Keywords

Examples

			a(20)=6, the tuples being: (533333),(353333),(335333),(333533),(333353),(333335).
		

Crossrefs

Programs

  • Haskell
    a245492 n = a245492_list !! (n-1)
    a245492_list = [0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 3, 0] ++
                   zipWith3 (((+) .) . (+))
                   (drop 8 a245492_list) (drop 10 a245492_list)
                   (cycle [1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 2, 0, 0, 1, 0])
    -- Reinhard Zumkeller, Jul 28 2014
  • Mathematica
    CoefficientList[Series[x^8*(x^4 + x^3 + 2*x^2 + 2*x + 2)/((x - 1)*(x^2 + x + 1)*(x^4 + x^3 + x^2 + x + 1)*(x^5 + x^3 - 1)), {x, 0, 60}], x] (* Wesley Ivan Hurt, Jul 24 2014 *)
  • PARI
    a=[0,0,0,0,0,0,0,2,0,0,3,0]; b=[1,1,0,0,1,1,0,1,0,0,2,0,0,1,0]; k=1; for(n=13, 100, a=concat(a, a[n-3]+a[n-5]+b[k]); if(k==#b, k=1, k++)); a \\ Colin Barker, Jul 24 2014
    

Formula

a(n) = a(n-3)+a(n-5)+b(n) where b(n) is the 15-cycle: (1,1,0,0,1,1,0,1,0,0,2,0,0,1,0) with b(n)=b(n-15) starting at b(13)=1. e.g. b(28)=b(13). The initial values for a(n) are: a(8)=2, a(9)=0, a(10)=0, a(11)=3, a(12)=0.
G.f.: x^8*(x^4+x^3+2*x^2+2*x+2) / ((x-1)*(x^2+x+1)*(x^4+x^3+x^2+x+1)*(x^5+x^3-1)). - Colin Barker, Jul 24 2014

Extensions

More terms from Colin Barker, Jul 24 2014