A245492 Number of compositions of n into parts 3 and 5 with at least one 3 and one 5.
0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 3, 0, 3, 4, 0, 6, 5, 4, 10, 6, 10, 15, 12, 20, 21, 23, 35, 34, 44, 56, 57, 80, 91, 101, 137, 148, 181, 230, 249, 318, 379, 430, 549, 629, 748, 928, 1060, 1298, 1557, 1809, 2226, 2617, 3109, 3783, 4426, 5336, 6400, 7536, 9120
Offset: 0
Examples
a(20)=6, the tuples being: (533333),(353333),(335333),(333533),(333353),(333335).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (-1, -1, 1, 1, 3, 2, 2, -1, -1, -2, -1, -1).
Programs
-
Haskell
a245492 n = a245492_list !! (n-1) a245492_list = [0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 3, 0] ++ zipWith3 (((+) .) . (+)) (drop 8 a245492_list) (drop 10 a245492_list) (cycle [1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 2, 0, 0, 1, 0]) -- Reinhard Zumkeller, Jul 28 2014
-
Mathematica
CoefficientList[Series[x^8*(x^4 + x^3 + 2*x^2 + 2*x + 2)/((x - 1)*(x^2 + x + 1)*(x^4 + x^3 + x^2 + x + 1)*(x^5 + x^3 - 1)), {x, 0, 60}], x] (* Wesley Ivan Hurt, Jul 24 2014 *)
-
PARI
a=[0,0,0,0,0,0,0,2,0,0,3,0]; b=[1,1,0,0,1,1,0,1,0,0,2,0,0,1,0]; k=1; for(n=13, 100, a=concat(a, a[n-3]+a[n-5]+b[k]); if(k==#b, k=1, k++)); a \\ Colin Barker, Jul 24 2014
Formula
a(n) = a(n-3)+a(n-5)+b(n) where b(n) is the 15-cycle: (1,1,0,0,1,1,0,1,0,0,2,0,0,1,0) with b(n)=b(n-15) starting at b(13)=1. e.g. b(28)=b(13). The initial values for a(n) are: a(8)=2, a(9)=0, a(10)=0, a(11)=3, a(12)=0.
G.f.: x^8*(x^4+x^3+2*x^2+2*x+2) / ((x-1)*(x^2+x+1)*(x^4+x^3+x^2+x+1)*(x^5+x^3-1)). - Colin Barker, Jul 24 2014
Extensions
More terms from Colin Barker, Jul 24 2014