A245495 Primes of the form n! - (n+1)! + (n+2)! + 1.
103, 4441, 36650881, 5787936001, 19702293811201, 1075342687614074880001, 8547762518578406446202880000001, 59043709472234119545920159524322926688993280000000001, 698533028148544417308552639358841460358000936394290829866303488000000000001
Offset: 1
Keywords
Examples
m = 3: m! - (m+1)! + (m+2)! + 1 = 103, which is prime, hence appears in the sequence. m = 5: m! - (m+1)! + (m+2)! + 1 = 4441, which is prime, hence appears in the sequence.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..15
Programs
-
Mathematica
Select[Table[n! - (n + 1)! + (n + 2)! + 1, {n, 200}], PrimeQ[#] &] Select[#[[1]]-#[[2]]+#[[3]]+1&/@Partition[Range[70]!,3,1],PrimeQ] (* Harvey P. Dale, Aug 20 2021 *)
-
PARI
a(n) = p=n!-(n+1)!+(n+2)!+1;if(ispseudoprime(p),return(p)) n=1;while(n<100,if(a(n),print1(a(n),", "));n++) \\ Derek Orr, Jul 27 2014
Comments