A090381 Expansion of (1+4x+7x^2)/((1-x)^2*(1-x^2)).
1, 6, 19, 36, 61, 90, 127, 168, 217, 270, 331, 396, 469, 546, 631, 720, 817, 918, 1027, 1140, 1261, 1386, 1519, 1656, 1801, 1950, 2107, 2268, 2437, 2610, 2791, 2976, 3169, 3366, 3571, 3780, 3997, 4218, 4447, 4680, 4921, 5166, 5419, 5676, 5941, 6210, 6487, 6768, 7057, 7350, 7651, 7956, 8269
Offset: 0
Examples
Some triples for n=10 (from _R. H. Hardin_, Aug 04 2014): ..3....1....2....1....7....9....5....8....5....6....9....4...10....8....6....2 ..3....3....8....9....3....3....7....2....9....4....3...10....9....1....8....7 ..7....7...10....5....2....1....3....7....1....3....7....0....1....9....4....8
Links
- R. H. Hardin and N. J. A. Sloane, Table of n, a(n) for n = 0..1000 [First 210 terms from Hardin]
- N. Eriksson, Toric ideals of homogeneous phylogenetic models, arXiv:math/0401175 [math.CO], 2004.
- Nicolas Nagel, Example picture for angle (n+1)-sectors
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Crossrefs
Programs
-
Magma
[3*n*(n+1)+(1+(-1)^n)/2 : n in [0..50]]; // Wesley Ivan Hurt, Sep 13 2016
-
Maple
f:=n-> if n mod 2 = 0 then t:=n/2; 12*t^2+6*t+1 else t:=(n-1)/2; 12*t^2+18*t+6; fi; [seq(f(n), n=0..100)];
-
Mathematica
CoefficientList[Series[(1 + 4 x + 7 x^2)/((1 - x)^2*(1 - x^2)), {x, 0, 52}], x] (* Michael De Vlieger, May 07 2016 *) Table[3 n (n + 1) + (1 + (-1)^n)/2, {n, 0, 52}] (* or *) LinearRecurrence[{2, 0, -2, 1}, {1, 6, 19, 36}, 53] (* Michael De Vlieger, Sep 12 2016 *)
-
PARI
x='x+O('x^99); Vec((1+4*x+7*x^2)/((1-x)^2*(1-x^2))) \\ Altug Alkan, May 12 2016
Formula
G.f.: (1+4x+7x^2)/((1-x)^2*(1-x^2)).
a(2t) = 12t^2+6t+1, a(2t+1) = 12t^2+18t+6 (t >= 0).
The defining g.f. implies the recurrence a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4), an empirical discovery of R. H. Hardin.
a(n) = 3*n*(n+1)+(1+(-1)^n)/2. - Wesley Ivan Hurt, May 06 2016
E.g.f.: 3*x*(2 + x)*exp(x) + cosh(x). - Ilya Gutkovskiy, May 06 2016
Comments