cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245561 a(n) = 5^n - ( (sqrt(5)*phi)^n + (sqrt(5)/phi)^n ) + 1, where phi = golden ratio A001622.

Original entry on oeis.org

0, 1, 11, 76, 451, 2501, 13376, 70001, 361251, 1846876, 9381251, 47437501, 239109376, 1202500001, 6037656251, 30279296876, 151725781251, 759820312501, 3803412109376, 19032656250001, 95219707031251, 476302685546876, 2382252050781251, 11913932617187501
Offset: 0

Views

Author

N. J. A. Sloane, Aug 08 2014

Keywords

References

  • Roger L. Bagula, email message, Aug 08 2014.

Crossrefs

Programs

  • Magma
    [5^n + 1 - Floor(((5+Sqrt(5))/2)^n+((5-Sqrt(5))/2)^n): n in [0..30]]; // Vincenzo Librandi, Aug 08 2014
  • Maple
    g:=n->simplify(rationalize(simplify(expand( (sqrt(5)*p)^n + (sqrt(5)*q)^n ))); # A020876
    h:=n->5^n-g(n)+1;
    [seq(h(n),n=0..40)];
  • Mathematica
    CoefficientList[Series[-x (5 x^2 - 1)/((1 - 5 x + 5 x^2) (x - 1)(5 x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 08 2014 *)
    LinearRecurrence[{11,-40,55,-25},{0,1,11,76},30] (* Harvey P. Dale, Nov 05 2017 *)

Formula

a(n) = 5^n - A020876(n) + 1.
G.f.: -x*(5*x^2-1)/((1-5*x+5*x^2)*(x-1)*(5*x-1)). - Vincenzo Librandi, Aug 08 2014