cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245575 Number of ways of writing n as the sum of two quarter-squares (cf. A002620).

Original entry on oeis.org

1, 2, 3, 2, 3, 2, 4, 2, 3, 2, 4, 2, 3, 4, 2, 2, 4, 2, 5, 0, 4, 4, 4, 0, 3, 4, 4, 2, 2, 4, 2, 4, 5, 0, 4, 0, 6, 4, 2, 2, 3, 2, 6, 2, 2, 4, 4, 0, 4, 2, 5, 4, 2, 2, 2, 4, 4, 2, 6, 0, 3, 4, 4, 0, 2, 6, 4, 2, 4, 2, 2, 0, 7, 4, 4, 0, 6, 0, 4, 2, 2, 6, 2, 2, 5, 4
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 04 2014

Keywords

Comments

a(n) is also the number of times n appears in the triangle A338796, or equivalently, the number of positive integer solutions of the equation A338796(x, y) = n for y <= x. - Stefano Spezia, Mar 03 2022

Examples

			a(10) = #{9+1, 6+4, 4+6, 1+9} = 4;
a(11) = #{9+2, 2+9} = 2;
a(12) = #{12+0, 6+6, 0+12} = 3;
a(13) = #{12+1, 9+4, 4+9, 1+12} = 4;
a(14) = #{6+1, 1+6} = 2;
a(15) = #{9+6, 6+9} = 2;
a(16) = #{16+0, 12+4, 4+12, 0+16} = 4;
a(17) = #{16+1, 1+16} = 2;
a(18) = #{16+2, 12+6, 9+9, 6+12, 2+16} = 5;
a(19) = #{} = 0;
a(20) = #{20+0, 16+4, 4+16, 0+20} = 4.
		

Crossrefs

Programs

  • Haskell
    a245575 n = a245575_list !! n
    a245575_list = f 0 [] $ tail a002620_list where
       f u vs ws'@(w:ws)
         | u < w     = (sum $ map (a240025 . (u -)) vs) : f (u + 1) vs ws'
         | otherwise = f u (w : vs) ws
  • Mathematica
    qsQ[n_] := qsQ[n] = With[{s = Sqrt[n]}, Which[IntegerQ[s], True, n == Floor[s] (Floor[s]+1), True, True, False]]; a[n_] := Count[Range[0, n], k_ /; qsQ[k] && qsQ[n-k]]; Array[a, 100, 0] (* Jean-François Alcover, May 08 2017 *) (* or *)
    u[{x_,y_}] := 2-Boole[x==y]; a[n_] := Total[u /@ IntegerPartitions[n, {2}, Floor[Range[1 + 2 Sqrt@ n]^2/4]]]; Array[a, 100, 0] (* Giovanni Resta, May 08 2017 *)

Formula

a(A182834(n)) mod 2 = 0; a(A007550(n)) mod 2 = 1;
a(A240952(n)) = n and a(A240952(m)) <> n for m < a(n);
a(A245585(n)) = 0.