A245575 Number of ways of writing n as the sum of two quarter-squares (cf. A002620).
1, 2, 3, 2, 3, 2, 4, 2, 3, 2, 4, 2, 3, 4, 2, 2, 4, 2, 5, 0, 4, 4, 4, 0, 3, 4, 4, 2, 2, 4, 2, 4, 5, 0, 4, 0, 6, 4, 2, 2, 3, 2, 6, 2, 2, 4, 4, 0, 4, 2, 5, 4, 2, 2, 2, 4, 4, 2, 6, 0, 3, 4, 4, 0, 2, 6, 4, 2, 4, 2, 2, 0, 7, 4, 4, 0, 6, 0, 4, 2, 2, 6, 2, 2, 5, 4
Offset: 0
Keywords
Examples
a(10) = #{9+1, 6+4, 4+6, 1+9} = 4; a(11) = #{9+2, 2+9} = 2; a(12) = #{12+0, 6+6, 0+12} = 3; a(13) = #{12+1, 9+4, 4+9, 1+12} = 4; a(14) = #{6+1, 1+6} = 2; a(15) = #{9+6, 6+9} = 2; a(16) = #{16+0, 12+4, 4+12, 0+16} = 4; a(17) = #{16+1, 1+16} = 2; a(18) = #{16+2, 12+6, 9+9, 6+12, 2+16} = 5; a(19) = #{} = 0; a(20) = #{20+0, 16+4, 4+16, 0+20} = 4.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Programs
-
Haskell
a245575 n = a245575_list !! n a245575_list = f 0 [] $ tail a002620_list where f u vs ws'@(w:ws) | u < w = (sum $ map (a240025 . (u -)) vs) : f (u + 1) vs ws' | otherwise = f u (w : vs) ws
-
Mathematica
qsQ[n_] := qsQ[n] = With[{s = Sqrt[n]}, Which[IntegerQ[s], True, n == Floor[s] (Floor[s]+1), True, True, False]]; a[n_] := Count[Range[0, n], k_ /; qsQ[k] && qsQ[n-k]]; Array[a, 100, 0] (* Jean-François Alcover, May 08 2017 *) (* or *) u[{x_,y_}] := 2-Boole[x==y]; a[n_] := Total[u /@ IntegerPartitions[n, {2}, Floor[Range[1 + 2 Sqrt@ n]^2/4]]]; Array[a, 100, 0] (* Giovanni Resta, May 08 2017 *)
Comments