A245577 Numbers k such that k^4 is a sum of 4 consecutive primes.
12, 90, 208, 212, 234, 242, 314, 366, 404, 410, 416, 486, 540, 590, 750, 888, 908, 1152, 1418, 1444, 1500, 1524, 1658, 1666, 1736, 1798, 1814, 1874, 1940, 1942, 2094, 2138, 2266, 2496, 2584, 3058, 3062, 3206, 3660, 4034, 4080, 4208, 4368, 4422, 4606, 4872
Offset: 1
Keywords
Examples
12^4 = 20736 = prime(689) + prime(689 + 1) + prime(689 + 2) + prime(689 + 3) = 5171 + 5179 + 5189 + 5197.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..5100 (first 1189 terms from Zak Seidov)
Programs
-
Mathematica
fQ[n_] := MemberQ[ Total@# & /@ Partition[ Table[ NextPrime[n^4/4, i], {i, {-3, -2, -1, 1, 2, 3}}], 4, 1], n^4]; Select[ Range@ 5000, fQ] (* Robert G. Wilson v, Dec 03 2014 *)
-
PARI
isscpn(n) = {np = n^4; p = precprime(np\4); for (i=1, 3, p = precprime(p-1);); while(1, q = nextprime(p+1); r = nextprime(q+1); s = nextprime(r+1); if ((v=p+q+r+s) == np, return (1)); if (v > np, return (0)); p = q;);} \\ Michel Marcus, Nov 30 2014