cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245578 The number of permutations of {0,0,1,1,...,n-1,n-1} that begin with 0 and in which adjacent elements are adjacent mod n.

Original entry on oeis.org

1, 10, 18, 22, 32, 38, 50, 58, 72, 82, 98, 110, 128, 142, 162, 178, 200, 218, 242, 262, 288, 310, 338, 362, 392, 418, 450, 478, 512, 542, 578, 610, 648, 682, 722, 758, 800, 838, 882, 922, 968, 1010, 1058, 1102, 1152, 1198, 1250, 1298, 1352, 1402, 1458, 1510, 1568, 1622, 1682, 1738, 1800, 1858, 1922, 1982, 2048, 2110
Offset: 2

Views

Author

Don Knuth, Jul 25 2014

Keywords

Comments

a(n) is also the number of random walks of length 2n in which every residue class mod n occurs twice (except that there are 8 such walks when n=2).

Examples

			a(3)=10 because of the solutions 012012,012021,012102,012120,010212, and their complements mod 3.
G.f. = x^2 + 10*x^3 + 18*x^4 + 22*x^5 + 32*x^6 + 38*x^7 + 50*x^8 + 58*x^9 + ...
		

Programs

  • Magma
    [1] cat [(3+5*(-1)^n+8*n+2*n^2)/4: n in [3..70]]; // Vincenzo Librandi, Aug 05 2014
  • Maple
    A245578 := n -> `if`(n=2, 1, (3+5*(-1)^n+8*n+2*n^2)/4);
    seq(A245578(n), n = 2..63); # Peter Luschny, Jul 26 2014
  • Mathematica
    CoefficientList[Series[(1 + 8 x - 2 x^2 - 12 x^3 + 7 x^4)/((1 + x) (1 - x)^3), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 05 2014 *)
  • PARI
    Vec( x^2 * (1+8*x-2*x^2-12*x^3+7*x^4) / ((1+x) * (1-x)^3) + O(x^66) ) \\ Joerg Arndt, Jul 26 2014
    

Formula

a(n) = 2 * A209350(n) if n>2. - Michael Somos, Jul 26 2014
G.f.: x^2 * (1+8*x-2*x^2-12*x^3+7*x^4) / ((1+x) * (1-x)^3). - Joerg Arndt, Jul 26 2014
a(n) = (3+5*(-1)^n+8*n+2*n^2)/4 if n>2. - Peter Luschny, Jul 26 2014
E.g.f.: (5*exp(-x)+exp(x)*(2*x*(x+5)+3)-(14*x^2+8*(x+1)))/4. - Peter Luschny, Aug 04 2014