cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245579 Number of odd divisors of n multiplied by n.

Original entry on oeis.org

1, 2, 6, 4, 10, 12, 14, 8, 27, 20, 22, 24, 26, 28, 60, 16, 34, 54, 38, 40, 84, 44, 46, 48, 75, 52, 108, 56, 58, 120, 62, 32, 132, 68, 140, 108, 74, 76, 156, 80, 82, 168, 86, 88, 270, 92, 94, 96, 147, 150, 204, 104, 106, 216, 220, 112, 228, 116, 118, 240, 122
Offset: 1

Views

Author

Michael Somos, Jul 26 2014

Keywords

Examples

			G.f. = x + 2*x^2 + 6*x^3 + 4*x^4 + 10*x^5 + 12*x^6 + 14*x^7 + 8*x^8 + ...
For n = 10 there are two odd divisors of 10: 1 and 5, so a(10) = 2*10 = 20.
		

Crossrefs

Programs

  • Maple
    seq(n*numtheory:-tau(n/2^padic:-ordp(n,2)), n=1..100); # Robert Israel, Apr 26 2017
  • Mathematica
    a[ n_] := If[ n < 1, 0, n Sum[ Mod[d, 2], {d, Divisors @ n}]];
    (* Second program: *)
    Table[n DivisorSum[n, 1 &, OddQ], {n, 61}] (* Michael De Vlieger, Apr 24 2017 *)
  • PARI
    {a(n) = if( n<1, 0, n * sumdiv(n, d, d%2))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=1, n, if( k%2, k * x^k / (1 - x^k)^2), x * O(x^n)), n))};
    
  • PARI
    {a(n) = if( n<1, 0, n * numdiv(n / 2^valuation(n, 2)))} \\ Fast when n has many divisors. Jens Kruse Andersen, Jul 26 2014
    
  • Python
    from sympy import divisors
    def a(n): return n*len(list(filter(lambda i: i%2==1, divisors(n)))) # Indranil Ghosh, Apr 24 2017
    
  • Python
    from math import prod
    from sympy import factorint
    def A245579(n): return n*prod(e+1 for e in factorint(n>>(~n&n-1).bit_length()).values()) # Chai Wah Wu, Dec 31 2023

Formula

a(n) is multiplicative with a(2^e) = 2^e, a(p^e) = p^e * (e+1) if p>2.
a(n) = n * A001227(n).
G.f.: Sum_{k>0 odd} k * x^k / (1 - x^k)^2.
From Amiram Eldar, Dec 31 2022: (Start)
Dirichlet g.f.: zeta(s-1)^2*(1-1/2^(s-1)).
Sum_{k=1..n} a(k) ~ n^2*log(n)/4 + (4*gamma + 2*log(2) - 1)*n^2/8, where gamma is Euler's constant (A001620). (End)

Extensions

Edited by N. J. A. Sloane, Apr 27 2022