cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245624 Sequence of distinct least positive numbers such that the average of the first n terms is a cube.

Original entry on oeis.org

1, 15, 8, 84, 27, 249, 64, 552, 125, 1035, 216, 1740, 343, 2709, 512, 3984, 729, 5607, 1000, 7620, 1331, 10065, 1728, 12984, 2197, 16419, 2744, 20412, 3375, 25005, 4096, 30240, 4913, 36159, 5832, 42804, 6859, 50217, 8000, 58440, 9261, 67515, 10648, 77484, 12167, 88389, 13824
Offset: 1

Views

Author

Derek Orr, Nov 05 2014

Keywords

Comments

Colin Barker's formulas are true if the curve x^3 = 7*y^3 + 6*y^2 + 2*y has no positive integer solutions. This is a curve of genus 1 (equivalent to the elliptic curve s^3 + t^2 + 20), and does have some rational points, but no positive integer solutions at least for y <= 10^21. - Robert Israel, May 17 2015
Now confirmed: that curve has no positive integer solutions. See the Mathematics Stack Exchange link. - Robert Israel, May 18 2015

Crossrefs

Programs

  • Magma
    &cat[[k^3, 7*k^3+6*k^2+2*k]: k in [1..25]]; // Vincenzo Librandi, May 19 2015
    
  • Maple
    seq(op([k^3, 7*k^3+6*k^2+2*k]),k=1..100); # Robert Israel, May 18 2015
  • Mathematica
    Flatten[Table[{n^3, 7 n^3 + 6 n^2 + 2 n}, {n, 25}]] (* Vincenzo Librandi, May 19 2015 *)
  • PARI
    v=[]; n=1; while(n<10^5, num=(vecsum(v)+n); if(num%(#v+1)==0&&vecsearch(vecsort(v), n)==0, for(i=1, n+2, if(i^3>(num/(#v+1)), break); if(i^3==(num/(#v+1)), print1(n, ", "); v=concat(v, n); n=1; break))); n++)
    
  • PARI
    Vec(x*(3*x^5+x^4+24*x^3+4*x^2+15*x+1)/((x-1)^4*(x+1)^4) + O(x^100)) \\ Colin Barker, May 19 2015

Formula

a(2*n-1) = n^3, a(2*n) = 7*n^3 + 6*n^2 + 2*n.
a(n) = 4*a(n-2) - 6*a(n-4) + 4*a(n-6) - a(n-8) for n > 8. - Colin Barker, Nov 05 2014
G.f.: x*(3*x^5 + x^4 + 24*x^3 + 4*x^2 + 15*x + 1) / ((x-1)^4*(x+1)^4). - Colin Barker, Nov 05 2014