A245630 Products of terms of A006094 (products of 2 successive primes).
1, 6, 15, 35, 36, 77, 90, 143, 210, 216, 221, 225, 323, 437, 462, 525, 540, 667, 858, 899, 1147, 1155, 1225, 1260, 1296, 1326, 1350, 1517, 1763, 1938, 2021, 2145, 2491, 2622, 2695, 2772, 3127, 3150, 3240, 3315, 3375, 3599, 4002, 4087, 4757, 4845, 5005, 5148, 5183
Offset: 1
Keywords
Examples
1 is in the sequence. 6 = 2*3 is in the sequence. 36 = (2*3)^2 is in the sequence. 90 = (2*3) * (3*5) is in the sequence.
Links
- Robert Israel, Table of n, a(n) for n = 1..6742
- Paul Erdős, Solution to Advanced Problem 4413, American Mathematical Monthly, 59 (1952) 259-261.
Programs
-
Maple
N:= 10^6: # to get all terms <= N PP:= [seq(ithprime(i)*ithprime(i+1),i=1.. numtheory[pi](floor(sqrt(N)))-1)]: ext:= (x,p) -> seq(x*p^i,i=0..floor(log[p](N/x))): S:= {1}: for i from 1 to nops(PP) do S:= map(ext,S,PP[i]) od: S;
-
Mathematica
M = 10^6; T = Table[Prime[n] Prime[n + 1], {n, 1, PrimePi[Sqrt[M]]}]; T2 = Select[Join[T, T^2], # <= M &]; Join[{1}, T2 //. {a___, b_, c___, d_, e___} /; b*d <= M && FreeQ[{a, b, c, d, e}, b*d] :> Sort[{a, b, c, d, e, b*d}]] (* Jean-François Alcover, Apr 12 2019 *)
-
PARI
f(n) = prime(n)*prime(n+1); \\ A006094 mul(x,y) = x*y; lista(nn) = {my(v = vector(nn, k, f(k)), lim = f(nn+1), ok = 0, nv); while (!ok, nv = select(x->(x
Michel Marcus, May 10 2021
Formula
Limit_{n->oo} a(n)/n^2 = Product_{i>=1} (1 - 1/sqrt(prime(i)*prime(i+1)))^2 / (1 - 1/prime(i))^2 = 1/A267251^2 (see Erdős reference).
Comments