cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245637 Decimal expansion of Integral_{x = 1..infinity} 1/x^x dx.

Original entry on oeis.org

7, 0, 4, 1, 6, 9, 9, 6, 0, 4, 3, 7, 4, 7, 4, 4, 6, 0, 0, 1, 1, 4, 4, 2, 1, 0, 7, 8, 5, 7, 1, 2, 3, 8, 1, 0, 5, 8, 7, 5, 9, 7, 2, 6, 8, 6, 9, 3, 4, 5, 6, 5, 5, 5, 4, 7, 8, 2, 9, 7, 6, 1, 5, 8, 4, 6, 0, 8, 7, 0, 7, 8, 3, 8, 1, 3, 3, 1, 9, 0, 7, 5, 0, 8, 1, 3, 7, 8, 8, 6, 6, 6, 0, 0, 3, 4, 1, 6, 8, 0, 7, 3, 1, 7
Offset: 0

Views

Author

Jean-François Alcover, Jul 28 2014

Keywords

Examples

			0.704169960437474460011442107857123810587597268693456555478297615846...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 4.6 Fransén-Robinson Constant, p. 263.

Crossrefs

Programs

  • Mathematica
    NIntegrate[1/x^x, {x, 1, Infinity}, WorkingPrecision -> 104] // RealDigits // First

Formula

Equals A229191 - A073009. - Vaclav Kotesovec, Jul 28 2014
From Peter Bala, Nov 10 2019: (Start)
Equals Integral_{x = 1..oo} x*(1 + log(x))/x^x dx - 1.
Equals Integral_{x = 1..oo} x*(1 - log^2(x))/x^x dx.
Conjecturally, equals 1 - Integral_{x = 1..oo, y = 1..oo} 1/(x*y)^(x*y) dx dy. [added Dec 21 2022: follows from Glasser's Theorem 1.] (End)
From Peter Bala, Dec 21 2022: (Start)
Equals 1 - Integral_{x = 1..oo} log(x)/x^x dx (since d/d(1/x^x) = -(1 + log(x))/x^x).
Equals the Borel sum of the divergent series 1 - 1^1 + 2^2 - 3^3 + 4^4 - .... See Watson, Section 5. Compare with the convergent series 1/1^1 - 1/2^2 + 1/3^3 - 1/4^4 + ... = Integral_{x = 0..1} x^x dx. See A083648.
More generally, for nonnegative integers a and b, the divergent series Sum_{n >= 0} (-1)^n*(a*n + b)^n is Borel summable to Integral_{x = 1..oo} x^(a-b-1)/x^(x^a) dx. (End)