cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A073009 Decimal expansion of Sum_{n >= 1} 1/n^n.

Original entry on oeis.org

1, 2, 9, 1, 2, 8, 5, 9, 9, 7, 0, 6, 2, 6, 6, 3, 5, 4, 0, 4, 0, 7, 2, 8, 2, 5, 9, 0, 5, 9, 5, 6, 0, 0, 5, 4, 1, 4, 9, 8, 6, 1, 9, 3, 6, 8, 2, 7, 4, 5, 2, 2, 3, 1, 7, 3, 1, 0, 0, 0, 2, 4, 4, 5, 1, 3, 6, 9, 4, 4, 5, 3, 8, 7, 6, 5, 2, 3, 4, 4, 5, 5, 5, 5, 8, 8, 1, 7, 0, 4, 1, 1, 2, 9, 4, 2, 9, 7, 0, 8, 9, 8, 4, 9, 9
Offset: 1

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Examples

			1.291285997062663540407282590595600541498619368...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.11, p. 449.

Crossrefs

Cf. A077178 (continued fraction expansion).

Programs

  • Maple
    evalf(Sum(1/n^n, n=1..infinity), 120); # Vaclav Kotesovec, Jun 24 2016
  • Mathematica
    RealDigits[N[Sum[1/n^n, {n, 1, Infinity}], 110]] [[1]]
  • PARI
    suminf(n=1,n^-n) \\ Charles R Greathouse IV, Apr 25 2012

Formula

Equals Integral_{x = 0..1} dx/x^x.
Constant also equals the double integral Integral_{y = 0..1} Integral_{x = 0..1} 1/(x*y)^(x*y) dx dy. - Peter Bala, Mar 04 2012
Approximately log(3)^e, see Munroe link. - Charles R Greathouse IV, Apr 25 2012
Another approximation is A + A^(-19), where A is Glaisher-Kinkelin constant (A074962). - Noam Shalev, Jan 16 2015
From Petros Hadjicostas, Jun 29 2020: (Start)
Equals -Integral_{x=0..1, y=0..1} dx dy/((x*y)^(x*y)*log(x*y)). (Apply Theorem 1 or Theorem 2 of Glasser (2019) to the integral Integral_{x = 0..1} dx/x^x.)
Equals -Integral_{x=0..1} log(x)/x^x dx. (Apply Theorem 1 or Theorem 2 of Glasser (2019) to the double integral of Peter Bala above.) (End)

A359283 Decimal expansion of Integral_{x = 1..oo} 1/x^(x^2) dx.

Original entry on oeis.org

4, 6, 2, 3, 0, 3, 7, 1, 1, 5, 3, 7, 3, 2, 1, 0, 7, 7, 1, 8, 2, 0, 3, 9, 6, 2, 8, 5, 8, 8, 2, 7, 7, 4, 4, 0, 9, 6, 1, 0, 2, 6, 0, 3, 7, 0, 4, 8, 4, 0, 7, 5, 6, 2, 2, 7, 0, 1, 3, 0, 0, 6, 0, 2, 5, 6, 7, 8, 2, 3, 3, 7, 7, 0, 2, 4, 0, 9, 8, 4, 4, 7, 7, 3, 4, 1, 7, 5, 4, 6, 1, 0, 5, 4, 2, 3, 3, 8, 6, 1, 8
Offset: 0

Views

Author

Peter Bala, Dec 24 2022

Keywords

Comments

For a, b nonnegative integers, the alternating divergent series Sum_{n >= 0} (-1)^n*(a*n + b)^n is Borel summable to Integral_{x = 1..oo} x^(a-b-1)/x^(x^a) dx.

Examples

			0.46230371153732107718203962858827744096102603704840...
		

Crossrefs

Programs

  • Maple
    evalf(int(1/x^(x^2), x = 1..infinity), 100);
  • Mathematica
    NIntegrate[1/x^(x^2), {x, 1, Infinity}, WorkingPrecision -> 105] // RealDigits // First

Formula

Equals Integral_{x = 1..oo} 1/(2*x - 1)^x dx.
Equals the Borel sum of the alternating divergent series Sum_{n >= 0} (-1)^n*(2*n + 1)^n. Compare with the alternating convergent series Sum_{n >= 1} (-1)^(n+1)/(2*n - 1)^n = Integral_{x = 0..1} x^(x^2) dx. See A253299.

A359284 Decimal expansion of Integral_{x = 0..1} 1/x^(x^3) dx.

Original entry on oeis.org

1, 0, 6, 5, 5, 1, 8, 2, 0, 5, 9, 2, 7, 6, 4, 9, 1, 7, 5, 8, 6, 3, 8, 2, 1, 4, 0, 5, 4, 8, 4, 5, 4, 7, 2, 3, 1, 5, 3, 9, 8, 0, 2, 2, 7, 9, 0, 9, 9, 8, 2, 1, 2, 4, 8, 9, 8, 9, 2, 8, 4, 5, 6, 5, 8, 7, 8, 3, 0, 3, 2, 5, 6, 8, 1, 2, 4, 5, 7, 0, 0, 0, 3, 8, 3, 0, 1, 9, 3, 5, 7, 6, 1, 2, 3, 9, 9, 4, 0, 9, 2, 8, 7, 9, 2, 7, 9, 0
Offset: 1

Views

Author

Peter Bala, Dec 24 2022

Keywords

Examples

			1.06551820592764917586382140548454723153980227909982...
		

Crossrefs

Programs

  • Maple
    evalf(int(1/x^(x^3), x = 0..1), 110);
  • Mathematica
    NIntegrate[1/x^(x^3), {x, 0, 1}, WorkingPrecision -> 110] // RealDigits // First
  • PARI
    intnum(x = 0, 1, x^(-x^3))

Formula

Equals Sum_{n >= 1} 1/(3*n - 2)^n.
More generally, Integral_{x = 0..1} 1/x^(t*x^3) dx = Sum_{n >= 1} t^(n-1)/(3*n - 2)^n. See A359285 (case t = -1).

A359285 Decimal expansion of Integral_{x = 0..1} x^(x^3) dx.

Original entry on oeis.org

9, 4, 0, 3, 1, 8, 0, 8, 6, 6, 8, 1, 9, 0, 6, 9, 8, 2, 8, 9, 7, 3, 6, 5, 6, 4, 1, 7, 4, 2, 9, 7, 6, 7, 2, 5, 8, 1, 1, 7, 5, 1, 1, 0, 1, 4, 9, 3, 0, 6, 7, 3, 5, 2, 9, 2, 6, 6, 6, 5, 1, 0, 1, 8, 3, 8, 0, 3, 5, 8, 9, 2, 2, 7, 3, 1, 2, 4, 6, 1, 7, 1, 5, 4, 6, 4, 0, 0, 8, 3, 6, 6, 6, 6, 7, 3, 3, 7, 7, 1, 2, 8, 1, 9, 3, 0, 7, 2, 6, 7
Offset: 0

Views

Author

Peter Bala, Dec 24 2022

Keywords

Examples

			0.94031808668190698289736564174297672581175110149306...
		

Crossrefs

Programs

  • Maple
    evalf(int(x^(x^3), x = 0..1), 110);
  • Mathematica
    NIntegrate[x^(x^3), {x, 0, 1}, WorkingPrecision -> 110] // RealDigits // First
  • PARI
    intnum(x = 0, 1, x^(x^3))

Formula

Equals Sum_{n >= 1} (-1)^(n+1)/(3*n - 2)^n.

A359286 Decimal expansion of Integral_{x = 1..oo} 1/x^(x^3) dx.

Original entry on oeis.org

3, 5, 8, 5, 4, 2, 7, 1, 6, 0, 0, 0, 3, 3, 9, 9, 6, 5, 7, 0, 7, 0, 5, 7, 6, 0, 7, 7, 9, 1, 8, 1, 1, 3, 1, 1, 6, 8, 2, 0, 3, 6, 2, 0, 5, 7, 2, 1, 3, 0, 1, 1, 2, 7, 7, 0, 4, 0, 0, 8, 7, 6, 4, 8, 8, 1, 4, 0, 5, 6, 5, 4, 1, 2, 9, 1, 5, 9, 7, 3, 0, 1, 1, 4, 9, 3, 2, 5, 3, 6, 1, 5, 7, 6, 5, 9, 5, 6, 9, 9, 7, 4, 4, 0, 3, 6, 8, 6
Offset: 1

Views

Author

Peter Bala, Dec 24 2022

Keywords

Comments

For a, b nonnegative integers, the alternating divergent series Sum_{n >= 0} (-1)^n*(a*n + b)^n is Borel summable to Integral_{x = 1..oo} x^(a-b-1)/x^(x^a) dx.

Examples

			0.35854271600033996570705760779181131168203620572130...
		

Crossrefs

Programs

  • Maple
    evalf(int(1/x^(x^3), x = 1..infinity), 110);
  • Mathematica
    NIntegrate[1/x^(x^3), {x, 1, Infinity}, WorkingPrecision -> 110] // RealDigits // First

Formula

Equals Integral_{x = 1..oo} 1/(3*x - 2)^x dx.
Equals the Borel sum of the alternating divergent series Sum_{n >= 0} (-1)^n*(3*n + 2)^n. Compare with the alternating convergent series Sum_{n >= 1} (-1)^(n+1)/(3*n - 2)^n = Integral_{x = 0..1} x^(x^3) dx. See A359285.

A229191 Decimal expansion of the integral_{x=0..Infinity} 1/x^x dx.

Original entry on oeis.org

1, 9, 9, 5, 4, 5, 5, 9, 5, 7, 5, 0, 0, 1, 3, 8, 0, 0, 0, 4, 1, 8, 7, 2, 4, 6, 9, 8, 4, 5, 2, 7, 2, 4, 3, 5, 2, 0, 8, 6, 2, 1, 6, 6, 3, 6, 9, 6, 7, 9, 7, 8, 8, 7, 2, 7, 8, 8, 3, 0, 0, 0, 6, 0, 9, 8, 3, 0, 3, 1, 6, 1, 7, 1, 4, 6, 5, 6, 6, 3, 6, 3, 0, 6, 6, 9, 5, 4, 9, 2, 7, 7, 8, 9, 4, 6, 3, 8, 7, 7, 0, 5, 8, 1, 6, 7, 6, 3, 7, 7, 0
Offset: 1

Views

Author

Robert G. Wilson v, Sep 15 2013

Keywords

Comments

"The function x^x grows even more quickly than Gamma(x) and the integral {0-inf} 1/x^x dx = 1.9954559575... and the integral {1-inf} 1/x^x dx = 0.7041699604... ." [Finch]

Examples

			1.9954559575001380004187246984527243520862166369679788727883...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, p. 263.

Crossrefs

Programs

  • Maple
    evalf(int(1/x^x, x=0..infinity), 120);  # Alois P. Heinz, Dec 30 2021
  • Mathematica
    RealDigits[ NIntegrate[ 1/x^x, {x, 0, 100}, MaxRecursion -> 5000, MaxPoints -> 5000, AccuracyGoal-> 111, PrecisionGoal -> 111, WorkingPrecision -> 120], 10, 111][[1]]
Showing 1-6 of 6 results.