A083649 Duplicate of A073009.
1, 1, 2, 9, 1, 2, 8, 5, 9, 9, 7, 0, 6, 2, 6, 6, 3, 5, 4, 0, 4, 0, 7, 2, 8, 2, 5, 9, 0, 5, 9, 5, 6, 0, 0
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
G.f. = 1 + x + 4*x^2 + 27*x^3 + 256*x^4 + 3125*x^5 + 46656*x^6 + 823543*x^7 + ...
a000312 n = n ^ n a000312_list = zipWith (^) [0..] [0..] -- Reinhard Zumkeller, Jul 07 2012
A000312 := n->n^n: seq(A000312(n), n=0..17);
Array[ #^# &, 16] (* Vladimir Joseph Stephan Orlovsky, May 01 2008 *) Table[Sum[StirlingS2[n, i] i! Binomial[n, i], {i, 0, n}], {n, 0, 20}] (* Geoffrey Critzer, Mar 17 2009 *) a[ n_] := If[ n < 1, Boole[n == 0], n^n]; (* Michael Somos, May 24 2014 *) a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ 1 / (1 + LambertW[-x]), {x, 0, n}]]; (* Michael Somos, May 24 2014 *) a[ n_] := If[n < 0, 0, n! SeriesCoefficient[ Nest[ 1 / (1 - x / (1 - Integrate[#, x])) &, 1 + O[x], n], {x, 0, n}]]; (* Michael Somos, May 24 2014 *) a[ n_] := If[ n < 0, 0, With[{m = n + 1}, m! SeriesCoefficient[ InverseSeries[ Series[ (x - 1) Log[1 - x], {x, 0, m}]], m]]]; (* Michael Somos, May 24 2014 *)
A000312[n]:=if n=0 then 1 else n^n$ makelist(A000312[n],n,0,30); /* Martin Ettl, Oct 29 2012 */
{a(n) = n^n};
is(n)=my(b,k=ispower(n,,&b));if(k,for(e=1,valuation(k,b), if(k/b^e == e, return(1)))); n==1 \\ Charles R Greathouse IV, Jan 14 2013
{a(n) = my(A = 1 + O(x)); if( n<0, 0, for(k=1, n, A = 1 / (1 - x / (1 - intformal( A)))); n! * polcoeff( A, n))}; /* Michael Somos, May 24 2014 */
def A000312(n): return n**n # Chai Wah Wu, Nov 07 2022
0.78343051071213440705926438652697546940768199014693095825541782270...
RealDigits[ Sum[ -(-1)^n /n^n, {n, 1, 60}], 10, 111] [[1]] (* Robert G. Wilson v, Jan 31 2005 *)
-sumalt(n=1, (-1/n)^(n)) \\ Michel Marcus, Oct 15 2015
numerical_approx(-sum((-1/n)^n for n in (1..120)), digits=130) # G. C. Greubel, Mar 01 2019
0.287358251306224179736418045878932206955908802685881709299499368947089...
digits = 105; n0 = 10; dn = 10; Clear[f]; f[n_] := f[n] = RealDigits[ Sum[ 1/Prime[k]^Prime[k], {k, 1, n}], 10, digits+5] // First; f[n = n0]; f[n = n+dn]; While[Print["n = ", n]; f[n] != f[n-dn], n = n+dn]; Take[f[n], digits] (* Jean-François Alcover, Nov 22 2013 *)
ptothep(n) = { local(x,s,a); default(realprecision,200); s=0; forprime(x=2,n,s+=1./x^x); a=Vec(Str(s)); for(x=3,n,print1(eval(a[x]),",")) }
1.250021433470507544581618655692730516577534706218865768307...
RealDigits[ Sum[1/(n!)^(n!), {n, 4}], 10, 111][[1]] (* Robert G. Wilson v, Feb 26 2008 *)
suminf(n=1, 1/(n!^n!)) \\ Michel Marcus, Dec 22 2016
2.23818130679669304318313699419971800961618108176500542239159050811...
SetDefaultRealField(RealField(100)); [(&+[1/k^Log(k): k in [1..1000]])]; // G. C. Greubel, Nov 20 2018
evalf(sum(1/(n^log(n)), n=1..infinity), 110); \\ Bernard Schott, May 23 2019
s = 0; Do[s = N[s + 1/n^Log[n], 256], {n, 10^7}]; RealDigits[s, 10, 111][[1]] (* Robert G. Wilson v, Nov 02 2004 *)
default(realprecision,35);sum(n=1,50000,1./(n^log(n)))
sumpos(n=1, 1/(n^log(n))) \\ Michel Marcus, May 24 2019
numerical_approx(sum(1/k^log(k) for k in [1..1000]), digits=100) # G. C. Greubel, Nov 20 2018
{1}~Join~Table[(2 n)^(2 n), {n, 1, 4!}] (* Michael De Vlieger, Aug 04 2015 *)
def A085534(n): return (m:=n<<1)**m # Chai Wah Wu, Nov 18 2022
1.62847371290158444705588914326188303165054031095462141647413643009...
evalf(add(n/(n^n), n = 0..65), 100); # Peter Bala, Nov 02 2022
s = 0; Do[s = N[s + n/n^n, 128], {n, 62}]; RealDigits[s, 10, 111][[1]] (* Robert G. Wilson v, Nov 03 2004 *)
suminf(n=1, 1/n^(n-1)) \\ Michel Marcus, Oct 21 2019
Sum_{k>=1} 1/(k!!)^(k!!) = 1.28703709664168181471132029755820425904216955340222081026798765926909...
RealDigits[N[Sum[1/n^n, {n, 1, 100}], 200]][[1]]
0.704169960437474460011442107857123810587597268693456555478297615846...
NIntegrate[1/x^x, {x, 1, Infinity}, WorkingPrecision -> 104] // RealDigits // First
Comments