cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A134878 Decimal expansion of Sum_{k>=1} 1/(k^2)^(k^2).

Original entry on oeis.org

1, 0, 0, 3, 9, 0, 6, 2, 5, 2, 5, 8, 1, 1, 7, 4, 7, 9, 1, 7, 6, 7, 4, 0, 7, 2, 9, 0, 6, 1, 4, 3, 0, 6, 7, 4, 1, 0, 7, 6, 1, 2, 4, 9, 2, 4, 3, 7, 9, 2, 8, 5, 9, 4, 7, 8, 7, 6, 4, 0, 4, 7, 9, 0, 7, 9, 5, 0, 9, 9, 2, 1, 9, 0, 5, 0, 8, 6, 9, 4, 4, 5, 1, 6, 6, 8, 8, 4, 0, 2, 7, 3, 4, 8, 3, 4, 4, 6, 9, 6, 6, 8, 8, 5
Offset: 1

Views

Author

Artur Jasinski, Nov 14 2007

Keywords

Comments

Sum_{k>=1} 1/(k^2)^(k^2) = 1.003906252581174791767407290614306741076124924379285...

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sum[1/(n^2)^(n^2), {n, 1, 30}], 200]][[1]]

Formula

Equals Sum_{n>=1} 1/A008972(n). - R. J. Mathar, Jul 31 2025

A134879 Decimal expansion of Sum_{k>=1} 1/(k^3)^(k^3).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 5, 9, 6, 0, 4, 6, 4, 4, 7, 7, 5, 3, 9, 0, 6, 2, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 5, 5, 1, 6, 5, 2, 3, 3, 7, 2, 8, 4, 5, 8, 8, 8, 8, 8, 3, 7, 9, 8, 9, 7, 5, 9, 3, 7, 6, 8, 3, 7, 2, 0, 8, 4, 9, 2, 0, 2, 8, 5, 0, 1, 1, 5, 8, 4, 6, 2, 0, 8, 2, 0, 3, 7, 4, 9, 4, 4, 6, 3, 3, 8, 5, 6, 0, 8, 4, 0, 0
Offset: 1

Views

Author

Artur Jasinski, Nov 14 2007

Keywords

Comments

Sum_{k>=1} 1/(k^3)^(k^3) = 1.00000005960464477539062500000000000000225516523372...

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sum[1/(n^3)^(n^3), {n, 1, 30}], 200]][[1]]
  • PARI
    suminf(n=1,n^(-3*n^3)) \\ Charles R Greathouse IV, Dec 26 2011

A134880 Decimal expansion of Sum_{k>=1} 1/(2^k)^(2^k).

Original entry on oeis.org

2, 5, 3, 9, 0, 6, 3, 0, 9, 6, 0, 4, 6, 4, 4, 7, 7, 5, 4, 4, 4, 8, 3, 5, 1, 0, 8, 6, 2, 4, 2, 7, 5, 2, 2, 1, 7, 0, 0, 3, 7, 2, 6, 4, 0, 0, 4, 4, 1, 8, 1, 3, 1, 3, 3, 3, 7, 0, 7, 2, 6, 6, 4, 5, 8, 5, 4, 1, 1, 9, 7, 7, 3, 3, 5, 5, 9, 0, 7, 7, 9, 3, 6, 0, 9, 7, 6, 6, 9, 0, 4, 0, 1
Offset: 0

Views

Author

Artur Jasinski, Nov 14 2007

Keywords

Examples

			0.25390630960464477544483510862427522170037264004418131333707266458541197733559...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sum[1/(2^n)^(2^n), {n, 1, 30}], 200]][[1]]
  • PARI
    suminf(k=1, 1/(2^k)^(2^k)) \\ Michel Marcus, Jan 15 2021

A134883 Decimal expansion of Sum_{n>=1} 1/(n^n+1).

Original entry on oeis.org

7, 3, 9, 9, 4, 7, 9, 4, 3, 4, 9, 5, 4, 6, 5, 5, 1, 2, 2, 5, 6, 0, 2, 5, 5, 3, 0, 7, 3, 4, 9, 9, 4, 7, 8, 2, 0, 5, 6, 1, 1, 0, 6, 6, 5, 7, 4, 2, 2, 4, 3, 9, 6, 2, 8, 7, 4, 5, 4, 5, 6, 5, 1, 9, 9, 9, 8, 0, 4, 3, 0, 8, 5, 4, 0, 8, 4, 8, 8, 1, 0, 2, 8, 9, 7, 3, 9, 5, 3, 1, 1, 2, 0, 7, 1, 2, 1, 5, 6, 8, 2, 0, 5, 9
Offset: 0

Views

Author

Artur Jasinski, Nov 15 2007

Keywords

Comments

Constant formed from sum of reversed Sierpinski numbers of first kind A014566.

Examples

			0.7399479434954655122560255307349947820561106657422439628745456519998...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sum[1/(n^n + 1), {n, 1, 150}], 100]][[1]] (* first zero removed *)

A134881 Decimal expansion of Sum_{k>=1} 1/(e^k)^(e^k).

Original entry on oeis.org

0, 6, 5, 9, 8, 8, 4, 1, 7, 7, 4, 3, 3, 4, 3, 7, 9, 1, 7, 5, 6, 5, 6, 2, 3, 8, 6, 7, 2, 4, 1, 0, 7, 7, 9, 7, 4, 3, 8, 1, 4, 4, 4, 3, 9, 3, 4, 1, 2, 1, 3, 1, 0, 2, 6, 2, 8, 0, 5, 4, 3, 6, 6, 5, 5, 9, 9, 9, 8, 5, 2, 0, 7, 6, 6, 0, 7, 1, 5, 7, 1, 2, 7, 8, 5, 1, 1, 2, 0, 0, 8, 1, 9, 4, 3, 6, 0, 7, 7, 0, 2
Offset: 0

Views

Author

Artur Jasinski, Nov 14 2007

Keywords

Examples

			0.06598841774334379175656238672410779743814443934121...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sum[1/(E^n)^(E^n), {n, 1, 20}], 200]][[1]] (* first two zeros removed *)

A134882 Decimal expansion of Sum_{x>=1} 1/(Pi^x)^(Pi^x).

Original entry on oeis.org

0, 2, 7, 4, 2, 5, 6, 9, 3, 2, 7, 6, 9, 9, 1, 3, 7, 8, 2, 8, 1, 1, 6, 1, 1, 9, 4, 8, 4, 3, 1, 2, 0, 8, 3, 2, 6, 8, 2, 2, 5, 5, 9, 5, 3, 8, 8, 0, 5, 7, 8, 9, 0, 7, 0, 9, 9, 8, 8, 1, 7, 4, 4, 3, 1, 0, 1, 6, 1, 3, 8, 6, 5, 0, 3, 8, 8, 4, 7, 4, 4, 5, 7, 6, 3, 0, 8, 4, 3, 8, 8, 3, 2, 9, 1, 7, 4, 4, 7, 1, 1
Offset: 0

Views

Author

Artur Jasinski, Nov 14 2007

Keywords

Examples

			0.02742569327699137828116119484312083268225595388057...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sum[1/(Pi^n)^(Pi^n), {n, 1, 20}], 200]][[1]] (* first two zeros removed *)

A174212 Ultradoublefactorials: a(n) = (n!!)^(n!!).

Original entry on oeis.org

1, 1, 4, 27, 16777216, 437893890380859375, 500702078263459319174537025249570888246709955377400223021257741084821677152403456
Offset: 0

Views

Author

Keywords

Comments

The next term (a(8)) has 993 digits. - Harvey P. Dale, Aug 17 2017

Examples

			For n=4 the doublefactorial is n!! = 4*2 = 8 and a(n) = n!!^n!! = 8^8 = 16777216.
		

Crossrefs

Programs

  • Maple
    P:=proc(i) local a,n; for n from 0 by 1 to i do print(doublefactorial(n)^doublefactorial(n)); od; end: P(10);
  • Mathematica
    udf[n_]:=Module[{c=n!!},c^c]; Array[udf,7,0] (* Harvey P. Dale, Aug 17 2017 *)

Formula

a(n) = A006882(n)^A006882(n).
Sum_{n>=1} 1/a(n) = A134877. - Amiram Eldar, Nov 11 2020
Showing 1-7 of 7 results.