cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A014566 Sierpiński numbers of the first kind: n^n + 1.

Original entry on oeis.org

2, 2, 5, 28, 257, 3126, 46657, 823544, 16777217, 387420490, 10000000001, 285311670612, 8916100448257, 302875106592254, 11112006825558017, 437893890380859376, 18446744073709551617, 827240261886336764178, 39346408075296537575425, 1978419655660313589123980
Offset: 0

Views

Author

Keywords

Comments

Sierpiński primes of the form n^n + 1 are {2,5,257,...} = A121270. The prime p divides a((p-1)/2) for p = {5,7,13,23,29,31,37,47,53,61,71,...} = A003628 Primes congruent to {5, 7} mod 8. p^2 divides a((p-1)/2) for prime p = {29,37,3373,...}. - Alexander Adamchuk, Sep 11 2006
n divides a(n-1) for even n, or 2n divides a(2n-1). a(2n-1)/(2n) = A124899(n) = {1, 7, 521, 102943, 38742049, 23775972551, 21633936185161, 27368368148803711, 45957792327018709121, ...}. 2^n divides a(2^n-1). A014566[2^n - 1] / 2^n = A081216[2^n - 1] = A122000[n] = {1, 7, 102943, 27368368148803711, 533411691585101123706582594658103586126397951, ...}. p+1 divides a(p) for prime p. a(p)/(p+1) = A056852[n] = {7, 521, 102943, 23775972551, 21633936185161, ...}. p^2 divides a((p-1)/2) for prime p = {29, 37, 3373} = A121999(n). - Alexander Adamchuk, Nov 12 2006

References

  • Graham Everest, Alf van der Poorten, Igor Shparlinski and Thomas Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • Maohua Le, Primes in the sequences n^n+1 and n^n-1, Smarandache Notions Journal, Vol. 10, No. 1-2-3, 1999, pp. 156-157.
  • Paulo Ribenboim, The Book of Prime Number Records, 2nd ed. New York: Springer-Verlag, p. 74, 1989.

Crossrefs

Programs

Formula

For n>0, resultant of x^n+1 and nx-1. - Ralf Stephan, Nov 20 2004
E.g.f.: exp(x) + 1/(1+LambertW(-x)). - Vaclav Kotesovec, Dec 20 2014
Sum_{n>=1} 1/a(n) = A134883. - Amiram Eldar, Nov 15 2020

Extensions

More terms from Erich Friedman

A134882 Decimal expansion of Sum_{x>=1} 1/(Pi^x)^(Pi^x).

Original entry on oeis.org

0, 2, 7, 4, 2, 5, 6, 9, 3, 2, 7, 6, 9, 9, 1, 3, 7, 8, 2, 8, 1, 1, 6, 1, 1, 9, 4, 8, 4, 3, 1, 2, 0, 8, 3, 2, 6, 8, 2, 2, 5, 5, 9, 5, 3, 8, 8, 0, 5, 7, 8, 9, 0, 7, 0, 9, 9, 8, 8, 1, 7, 4, 4, 3, 1, 0, 1, 6, 1, 3, 8, 6, 5, 0, 3, 8, 8, 4, 7, 4, 4, 5, 7, 6, 3, 0, 8, 4, 3, 8, 8, 3, 2, 9, 1, 7, 4, 4, 7, 1, 1
Offset: 0

Views

Author

Artur Jasinski, Nov 14 2007

Keywords

Examples

			0.02742569327699137828116119484312083268225595388057...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sum[1/(Pi^n)^(Pi^n), {n, 1, 20}], 200]][[1]] (* first two zeros removed *)

A286193 Decimal expansion of Sum_{n>=1} 1/(n^n+n).

Original entry on oeis.org

7, 0, 4, 1, 8, 8, 3, 4, 9, 9, 2, 3, 3, 1, 4, 7, 1, 8, 1, 7, 1, 2, 6, 2, 0, 0, 0, 4, 4, 2, 2, 1, 8, 5, 7, 8, 0, 3, 0, 4, 1, 5, 8, 5, 3, 7, 7, 2, 9, 0, 9, 4, 4, 5, 0, 7, 4, 2, 2, 2, 3, 4, 0, 3, 8, 6, 1, 3, 9, 0, 6, 9, 3, 8, 2, 4, 0, 7, 7, 6, 1, 5, 5, 9, 0, 4, 5, 6, 8, 5, 6, 2, 3, 5, 3, 0, 5, 6
Offset: 0

Views

Author

Jonathan Frech, May 04 2017

Keywords

Examples

			0.70418834992331471817126200044221857803...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sum[1/(n^n+n),{n,1,Infinity}],20]][[1]]
  • PARI
    suminf(n=1, 1/(n^n+n)) \\ Michel Marcus, May 04 2017
  • Python
    from decimal import *;getcontext().prec=300;print(sum([Decimal(1)/Decimal(n**n+n)for n in range(1,200)]))
    
Showing 1-3 of 3 results.