A325902 Numbers whose neighbor's prime factors with multiplicity can be partitioned into two multisets of equal sum.
11, 17, 21, 23, 27, 31, 50, 55, 56, 65, 71, 89, 129, 131, 144, 155, 169, 204, 209, 216, 229, 239, 241, 244, 251, 265, 287, 288, 300, 305, 337, 344, 351, 371, 373, 379, 407, 415, 493, 494, 517, 526, 545, 577, 645, 647, 664, 681, 685, 737, 749, 755, 769, 776, 780, 783, 815
Offset: 1
Keywords
Examples
71 is in the sequence since 70 = 2*5*7 < 71 < 2*2*2*3*3 = 72 with 2 + 5 + 3 + 3 = 7 + 2 + 2 + 2.
Links
- Jonathan Frech, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A063968.
Programs
-
Haskell
import Data.List (subsequences, (\\)) factors 1 = [] factors n | p <- head $ filter ((== 0) . mod n) [2..] = p : factors (n `div` p) sumPartitionable ns | p <- \ms -> sum ms == sum (ns \\ ms) = any p $ subsequences ns a325902 = filter (\n -> sumPartitionable $ factors (n-1) ++ factors (n+1)) [2..]
-
Mathematica
ok[n_] := Block[{t, p, m, z}, {p, m} = Transpose@ Tally@ Sort[ Join@ Flatten[ ConstantArray @@@ FactorInteger[#] & /@ {n-1, n+1}]]; t = Total[p m]; If[ OddQ@ t, False, z = Quiet@ LinearProgramming[1 + 0 p, {p}, {{t/2, 0}}, Prepend[#, 0] & /@ Transpose@{m}, Integers]; ListQ@z && Total[z p]==t/2]]; Select[ Range[3, 815], ok] (* Giovanni Resta, Sep 10 2019 *)
Comments