cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A067077 Numbers whose product of distinct prime factors is equal to its sum of digits.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 24, 375, 392, 640, 2401, 4802, 4913, 6400, 7744, 17576, 42592, 64000, 106496, 234256, 295936, 468750, 546875, 628864, 640000, 877952, 1124864, 1966080, 2839714, 3687936, 4687500, 4816896, 4952198, 6400000, 6453888
Offset: 1

Views

Author

Joseph L. Pe, Feb 18 2002

Keywords

Comments

The product of the distinct prime factors of n (the squarefree kernel of n) is also denoted by rad(n) = A007947(n). - Giovanni Resta, Apr 21 2017

Examples

			The prime factors of 375 are 3,5, which have product = 15, the sum of the digits of 375, so 375 is a term of the sequence.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Times@@ (First/@ FactorInteger[n]); g[n_] := Plus @@ IntegerDigits[n]; Select[Range[10^5], f[#] == g[#] &] (* or *)
    nd=12; up=10^nd; L={1}; Do[If[SquareFreeQ[su], ps = First /@ FactorInteger[su]; nps = Length@ ps; Clear[ric]; ric[n_, i_] := Block[{e = 0, m}, If[i > nps, If[Plus @@ IntegerDigits[su n] == su, Sow[su n]], While[ (m = n ps[[i]]^e ) su < up, ric[m, i+1]; e++]]]; z = Reap[ ric[1, 1]][[2]]; If[z != {}, L = Union[L, z[[1]]]]], {su, 2, 9 nd}]; L (* fast, terms < 10^12, Giovanni Resta, Apr 21 2017 *)
    Select[Range[65*10^5],Times@@FactorInteger[#][[All,1]]==Total[ IntegerDigits[ #]]&] (* Harvey P. Dale, Dec 16 2018 *)
  • PARI
    isok(k)={vecprod(factor(k)[,1]) == sumdigits(k)} \\ Harry J. Smith, May 06 2010

Extensions

a(19)-a(35) from Donovan Johnson, Sep 29 2009
a(1)=1 prepended by Giovanni Resta, Apr 21 2017

A070275 Numbers k such that the sum of the digits of k equals the sum of the prime divisors of k.

Original entry on oeis.org

2, 3, 5, 7, 84, 160, 250, 336, 468, 735, 936, 975, 1344, 1375, 1408, 1600, 1694, 1872, 2352, 2401, 2500, 2625, 2808, 3744, 3920, 4116, 4913, 5145, 5616, 6084, 6318, 7296, 7497, 7695, 8424, 8624, 8664, 8704, 9126, 9639, 10240, 12168, 12636, 12675, 14896
Offset: 1

Views

Author

Benoit Cloitre, May 09 2002

Keywords

Comments

If k=10^s*m is a term of the sequence where s > 0 and gcd(m,10)=1, then for each positive integer j, 10^j*m is in the sequence, because the sum of the digits of 10^j*k equals the sum of the digits of k and the sum of the distinct prime factors of 10^j*k equals the sum of the distinct prime factors of k. Also it is obvious that m isn't in the sequence. [Jahangeer Kholdi, Oct 07 2013]

Crossrefs

Programs

  • Mathematica
    Rest[Select[Range[20000],Total[Transpose[FactorInteger[#]][[1]]] == Total[ IntegerDigits[#]] &]] (* Harvey P. Dale, Dec 15 2010 *)
  • PARI
    isok(n) = sumdigits(n) == vecsum(factor(n)[,1]); \\ Michel Marcus, May 27 2018

A070274 Numbers n such that sum of digits of n equals the squarefree part of n.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 12, 24, 100, 150, 200, 300, 320, 375, 500, 600, 640, 700, 704, 735, 832, 960, 1014, 1088, 1200, 1815, 2023, 2400, 2535, 2940, 3549, 3610, 3840, 4046, 4335, 4913, 5054, 5376, 5415, 5491, 6069, 6137, 6358, 6647, 7260, 7581, 7942, 8959, 9386
Offset: 1

Views

Author

Benoit Cloitre, May 09 2002

Keywords

Comments

The squarefree part of x, core(x), is the smallest integer such that x*core(x) is a square.

Crossrefs

Programs

  • Mathematica
    core[n_]:=Block[{f=FactorInteger[n], p, e}, {p, e} = Transpose[f]; Times@@ (p^Mod[e, 2])]; Select[Range[10^4], core[#] == Plus @@ IntegerDigits[#] &] (* Giovanni Resta, Apr 21 2017 *)
  • PARI
    list(lim)=my(v=List()); forfactored(n=1,lim\1, if(core(n)==sumdigits(n[1]), listput(v,n[1]))); Vec(v) \\ Charles R Greathouse IV, Nov 05 2017

Extensions

Data corrected by Giovanni Resta, Apr 21 2017

A376157 Numbers k such that the sum of the digits of k equals the sum of its prime factors plus the sum of the multiplicities of each prime factor.

Original entry on oeis.org

4, 25, 36, 54, 125, 192, 289, 297, 343, 392, 448, 676, 756, 1089, 1536, 1764, 1936, 2646, 2888, 3872, 4802, 4860, 6174, 6250, 6776, 6860, 7290, 7488, 7680, 8750, 8775, 9408, 9747, 10648, 14739, 15309, 16848, 18432, 18865, 21296, 22869, 25725, 29988, 33750, 33957
Offset: 1

Views

Author

Jordan Brooks, Sep 12 2024

Keywords

Examples

			For k = 54, its prime factorization is 2^1*3^3: 5+4 = 2+1+3+3 = 9.
For k = 756, its prime factorization is 2^2*3^3*7^1: 7+5+6 = 2+2+3+3+7+1 = 18.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[34000], DigitSum[#]==Total[Flatten[FactorInteger[#]]] &] (* Stefano Spezia, Sep 14 2024 *)
  • PARI
    isok(k)={my(f=factor(k)); vecsum(f[,1]) + vecsum(f[,2]) == sumdigits(k)} \\ Andrew Howroyd, Sep 26 2024
  • Python
    from sympy.ntheory import factorint
    c = 2
    while c < 10000:
        charsum = 0
        for char in str(c):
            charsum += int(char)
        pf = factorint(c)
        cand = 0
        for p in pf.keys():
            cand += p
            cand += pf[p]
        if charsum == cand:
            print(c)
            print(pf)
        c += 1
    

Formula

{ k : A007953(k) = A008474(k) }.
Showing 1-4 of 4 results.