cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A057531 Numbers whose sum of digits and number of divisors are equal.

Original entry on oeis.org

1, 2, 11, 22, 36, 84, 101, 152, 156, 170, 202, 208, 225, 228, 288, 301, 372, 396, 441, 444, 468, 516, 525, 530, 602, 684, 710, 732, 804, 828, 882, 952, 972, 1003, 1016, 1034, 1070, 1072, 1106, 1111, 1164, 1236, 1304, 1308, 1425, 1472, 1476, 1521, 1524
Offset: 1

Views

Author

Asher Auel, Sep 03 2000

Keywords

Comments

[A007953(n)/A000005(n) = c] AND [A000005(n)/A007953(n) = c], c an integer. - Ctibor O. Zizka, Jun 26 2009

Examples

			36 is a term as the sum of the digits of 36 is 3+6 = 9 and the number of divisors is 9 too.
		

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 1000 ], DivisorSigma[ 0, # ]==Plus@@IntegerDigits[ # ]& ] (* Harvey P. Dale, Feb 19 2004 *)

A050689 Composites whose sum of digits equals number of its prime factors, with multiplicity.

Original entry on oeis.org

12, 30, 32, 40, 102, 220, 240, 500, 600, 1002, 1012, 1104, 1152, 1210, 1320, 1500, 2001, 2002, 2020, 2040, 2120, 2240, 2300, 3010, 3040, 3300, 4032, 4100, 4320, 5100, 5200, 6400, 7000, 7200, 10001, 10002, 10011, 10030, 10040, 10080, 10140, 10220, 10304, 10800
Offset: 1

Views

Author

Patrick De Geest, Aug 15 1999

Keywords

Comments

The sequence is infinite because there are infinitely many primes whose sum of digits is odd (see related comment in A119450). Let p be one of them, and let k be its digital sum. Then p*10^((k-1)/2) is a term. For example, 41*10^2 is a term. - Metin Sariyar, May 30 2020

Examples

			2002 is a term since 2+0+0+2 = 4, and 2002 = 2*7*11*13 has 4 prime factors.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10300],!PrimeQ[#]&&PrimeOmega[#]==Total[IntegerDigits[#]]&] (* Jayanta Basu, May 30 2013 *)
  • PARI
    isok(n) = sumdigits(n) == bigomega(n); \\ Michel Marcus, Feb 13 2017
    
  • Python
    from sympy import factorint
    def ok(n): return 1 < sum(map(int, str(n))) == sum(factorint(n).values())
    print([k for k in range(11000) if ok(k)]) # Michael S. Branicky, Dec 30 2021

A070275 Numbers k such that the sum of the digits of k equals the sum of the prime divisors of k.

Original entry on oeis.org

2, 3, 5, 7, 84, 160, 250, 336, 468, 735, 936, 975, 1344, 1375, 1408, 1600, 1694, 1872, 2352, 2401, 2500, 2625, 2808, 3744, 3920, 4116, 4913, 5145, 5616, 6084, 6318, 7296, 7497, 7695, 8424, 8624, 8664, 8704, 9126, 9639, 10240, 12168, 12636, 12675, 14896
Offset: 1

Views

Author

Benoit Cloitre, May 09 2002

Keywords

Comments

If k=10^s*m is a term of the sequence where s > 0 and gcd(m,10)=1, then for each positive integer j, 10^j*m is in the sequence, because the sum of the digits of 10^j*k equals the sum of the digits of k and the sum of the distinct prime factors of 10^j*k equals the sum of the distinct prime factors of k. Also it is obvious that m isn't in the sequence. [Jahangeer Kholdi, Oct 07 2013]

Crossrefs

Programs

  • Mathematica
    Rest[Select[Range[20000],Total[Transpose[FactorInteger[#]][[1]]] == Total[ IntegerDigits[#]] &]] (* Harvey P. Dale, Dec 15 2010 *)
  • PARI
    isok(n) = sumdigits(n) == vecsum(factor(n)[,1]); \\ Michel Marcus, May 27 2018

A070274 Numbers n such that sum of digits of n equals the squarefree part of n.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 12, 24, 100, 150, 200, 300, 320, 375, 500, 600, 640, 700, 704, 735, 832, 960, 1014, 1088, 1200, 1815, 2023, 2400, 2535, 2940, 3549, 3610, 3840, 4046, 4335, 4913, 5054, 5376, 5415, 5491, 6069, 6137, 6358, 6647, 7260, 7581, 7942, 8959, 9386
Offset: 1

Views

Author

Benoit Cloitre, May 09 2002

Keywords

Comments

The squarefree part of x, core(x), is the smallest integer such that x*core(x) is a square.

Crossrefs

Programs

  • Mathematica
    core[n_]:=Block[{f=FactorInteger[n], p, e}, {p, e} = Transpose[f]; Times@@ (p^Mod[e, 2])]; Select[Range[10^4], core[#] == Plus @@ IntegerDigits[#] &] (* Giovanni Resta, Apr 21 2017 *)
  • PARI
    list(lim)=my(v=List()); forfactored(n=1,lim\1, if(core(n)==sumdigits(n[1]), listput(v,n[1]))); Vec(v) \\ Charles R Greathouse IV, Nov 05 2017

Extensions

Data corrected by Giovanni Resta, Apr 21 2017

A285494 Numbers k such that digit sum of k = number of distinct prime factors of k.

Original entry on oeis.org

20, 30, 102, 120, 200, 300, 1002, 1200, 2000, 2001, 2002, 3000, 3010, 10001, 10002, 10011, 10030, 10120, 11001, 11020, 11110, 12000, 20000, 20001, 21010, 30000, 30030, 30100, 100001, 100030, 100101, 100130, 100210, 100300, 101001, 101101, 101200, 102102, 110001, 110200
Offset: 1

Views

Author

Jonathan Frech, Apr 19 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[2,10000],Total[IntegerDigits[#]]==Length[FactorInteger[#]]&] (* or *)
    nd = 10; s = 1; Sort@ Flatten@ Reap[ While[ Times @@ Prime[ Range@ s] < 10^nd, pa = IntegerPartitions[s, {nd}, Range[0, 9]]; Do[Sow@ Select[ FromDigits /@ Permutations[p], PrimeNu[#] == s &], {p, pa}]; s++]][[2, 1]] (* terms < 10^10, Giovanni Resta, Apr 21 2017 *)
  • PARI
    isok(n) = sumdigits(n) == omega(n); \\ Michel Marcus, Apr 20 2017

Extensions

More terms from Michel Marcus, Apr 20 2017

A384444 Positive integers k for which the sum of their digits equals the product of their prime digits.

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 20, 22, 30, 50, 70, 100, 123, 132, 200, 202, 213, 220, 231, 300, 312, 321, 500, 700, 1000, 1023, 1032, 1203, 1230, 1247, 1274, 1302, 1320, 1356, 1365, 1427, 1472, 1536, 1563, 1635, 1653, 1724, 1742, 2000, 2002, 2013, 2020, 2031, 2103, 2130, 2147
Offset: 1

Views

Author

Felix Huber, Jun 03 2025

Keywords

Comments

Numbers k for which A007953(k) = A384443(k).
If t is a term then t*10^m is also a term for any positive integer m.

Examples

			1302 is a term, because 1 + 3 + 0 + 2 = 3*2 = 6.
		

Crossrefs

Programs

  • Maple
    A384444:=proc(n)
        option remember;
        local k,c;
        if n=1 then
            1
        else
            for k from procname(n-1)+1 do
                c:=convert(k,'base',10);
                if mul(select(isprime,c))=add(c) then
                    return k
                fi
            od
        fi;
    end proc;
    seq(A384444(n),n=1..51);
  • Mathematica
    Select[Range[2147],Total[IntegerDigits[#]]==Times@@Select[IntegerDigits[#],PrimeQ]&] (* James C. McMahon, Jun 20 2025 *)
  • PARI
    isok(k) = my(d=digits(k)); vecprod(select(isprime, d)) == vecsum(d); \\ Michel Marcus, Jun 04 2025

A384445 a(n) is the number of multisets of n decimal digits where the sum of the digits equals the product of the prime digits.

Original entry on oeis.org

5, 6, 7, 10, 23, 43, 74, 125, 199, 305, 449, 637, 885, 1216, 1649, 2184, 2852, 3664, 4657, 5863, 7298, 9002, 10993, 13312, 16000, 19084, 22613, 26606, 31120, 36192, 41867, 48220, 55317, 63232, 72022, 81746, 92479, 104282, 117229, 131393, 146843, 163652, 181892
Offset: 1

Views

Author

Felix Huber, Jun 03 2025

Keywords

Examples

			a(3) = 7 because exactly for the 7 multisets with 3 digits {0, 0, 1}, {0, 0, 2}, {0, 0, 3}, {0, 0, 5}, {0, 0, 7}, {0, 2, 2} and {1, 2, 3} their sum equals the product of the prime digits.
a(4) = 10 because exactly for the 10 multisets with 4 digits {0, 0, 0, 1}, {0, 1, 2, 3}, {1, 2, 4, 7}, {1, 3, 5, 6}, {0, 0, 0, 2}, {0, 0, 2, 2}, {0, 0, 0, 3}, {0, 0, 0, 5}, {5, 5, 6, 9} and {0, 0, 0, 7} their sum equals the product of the prime digits.
		

Crossrefs

Programs

  • Maple
    f:=proc(p,n)
        local c,d,i,l,m,r,s,t,u,w,x,y,z;
        m:={0,1,4,6,8,9};
        t:=seq(cat(x,i),i in m);
        y:={l='Union'(t),w='Set'(l),t=~'Atom'};
        d:=(map2(apply,s,{t})=~m) union {s(w)='Set'(s(l))};
        Order:=p+1;
        r:=combstruct:-agfseries(y,d,'unlabeled',z,[[u,s]])[w(z,u)];
        r:=collect(convert(r,'polynom'),[z,u],'recursive');
        c:=coeff(r,z,p);
        coeff(c,u,n)
    end proc:
    A384445:=proc(n)
        local a,k,m,s,p,j,L;
        a:=1;
            for k from 9*n to 1 by -1 do
                L:=ifactors(k)[2];
                m:=nops(L);
                if m>0 and L[m,1]<=7 then
                    p:=n-add(L[j,2],j=1..m);
                    s:=k-add(L[j,1]*L[j,2],j=1..m);
                    if s=0 and p>=0 then
                        a:=a+1
                    elif p>0 and s>0 then
                        a:=a+f(p,s)
                    fi
                fi
    	od;
    	return a
    end proc;
    seq(A384445(n),n=1..43);

A384505 a(n) is the number of multisets of n positive decimal digits where the sum of the digits equals the product of the prime digits.

Original entry on oeis.org

5, 1, 1, 3, 13, 20, 31, 51, 74, 106, 144, 188, 248, 331, 433, 535, 668, 812, 993, 1206, 1435, 1704, 1991, 2319, 2688, 3084, 3529, 3993, 4514, 5072, 5675, 6353, 7097, 7915, 8790, 9724, 10733, 11803, 12947, 14164, 15450, 16809, 18240, 19757, 21374, 23073, 24876, 26759
Offset: 1

Views

Author

Felix Huber, Jun 11 2025

Keywords

Examples

			a(1) = 5 because exactly for the 5 multisets with 1 digits {1}, {2}, {3}, {5}, and {7} their sum equals the product of the prime digits.
a(2) = 1 because only for 1 multiset with 2 positive digits {2, 2} their sum equals the product of the prime digits: 2 + 2 = 2*2 = 4.
a(3) = 1 because only for 1 multiset with 3 positive digits {1, 2, 3} their sum equals the product of the prime digits: 1 + 2 + 3 = 2*3 = 6.
a(4) = 3 because exactly for the 3 multisets with 4 digits {1, 2, 4, 7}, {1, 3, 5, 6}, and {5, 5, 6, 9} their sum equals the product of the prime digits: 1 + 2 + 4 + 7 = 2 * 7 = 14, 1 + 3 + 5 + 6 = 3*5 = 15, 5 + 5 + 6 + 9 = 5*5 = 25.
		

Crossrefs

Programs

  • Maple
    f:=proc(p,n)
        local i,l,m,s,t,u,w,x,z;
        m:={1,4,6,8,9};
        t:=seq(cat(x,i),i in m);
        Order:=p+1;
        coeff(coeff(collect(convert(combstruct:-agfseries({l='Union'(t),w='Set'(l),t=~'Atom'},(map2(apply,s,{t})=~m) union {s(w)='Set'(s(l))},'unlabeled',z,[[u,s]])[w(z,u)],'polynom'),[z,u],'recursive'),z,p),u,n)
    end proc:
    A384505:=proc(n)
        local a,k,m,s,p,j,L;
        if n=1 then
            5
        elif n=2 then
            1
        else
            a:=0;
            for k from 9*n to 1 by -1 do
                L:=ifactors(k)[2];
                m:=nops(L);
                if m>0 and L[m,1]<=7 then
                    p:=n-add(L[j,2],j=1..m);
                    s:=k-add(L[j,1]*L[j,2],j=1..m);
                    if p>0 and s>0 then
                        a:=a+f(p,s)
                    fi
                fi
    	od;
    	return a
    	fi;
    end proc;
    seq(A384505(n),n=1..48);

Formula

a(n) = A384445(n) - A384445(n-1) for n > 1.

A050690 Sum of digits of zero-absent composite a(n) equals number of prime factors.

Original entry on oeis.org

12, 32, 1152, 11232, 13122, 14112, 21312, 111132, 112112, 3121152, 11231232, 11354112, 812122112, 1251213312, 2211121152, 2211213312, 5121114112, 26122125312, 56321114112, 62214111232, 431711322112, 3421411213312, 11111212122112, 11112113242112
Offset: 1

Views

Author

Patrick De Geest, Aug 15 1999

Keywords

Comments

10^11 < a(21) <= 431711322112. a(22) <= 3421411213312. - Donovan Johnson, May 30 2010
Do all terms end in 2, i.e., is each term = 2 mod 10? - Harvey P. Dale, May 26 2024

Examples

			E.g., 21312 (no zero in the string) gives 2+1+3+1+2 = 9 prime factors, namely, 2*2*2*2*2*2*3*3*37.
		

Crossrefs

Programs

  • Mathematica
    t={}; Do[If[FreeQ[x=IntegerDigits[n],0]&&PrimeOmega[n]==Total[x],AppendTo[t,n]],{n,2,3220000,2}]; t (* Jayanta Basu, May 30 2013 *)

Extensions

a(15)-a(20) from Donovan Johnson, May 30 2010
a(21)-a(22) confirmed by Giovanni Resta, Jun 02 2013
a(23)-a(24) from Giovanni Resta, Apr 23 2017
Showing 1-9 of 9 results.