cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A057531 Numbers whose sum of digits and number of divisors are equal.

Original entry on oeis.org

1, 2, 11, 22, 36, 84, 101, 152, 156, 170, 202, 208, 225, 228, 288, 301, 372, 396, 441, 444, 468, 516, 525, 530, 602, 684, 710, 732, 804, 828, 882, 952, 972, 1003, 1016, 1034, 1070, 1072, 1106, 1111, 1164, 1236, 1304, 1308, 1425, 1472, 1476, 1521, 1524
Offset: 1

Views

Author

Asher Auel, Sep 03 2000

Keywords

Comments

[A007953(n)/A000005(n) = c] AND [A000005(n)/A007953(n) = c], c an integer. - Ctibor O. Zizka, Jun 26 2009

Examples

			36 is a term as the sum of the digits of 36 is 3+6 = 9 and the number of divisors is 9 too.
		

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 1000 ], DivisorSigma[ 0, # ]==Plus@@IntegerDigits[ # ]& ] (* Harvey P. Dale, Feb 19 2004 *)

A067077 Numbers whose product of distinct prime factors is equal to its sum of digits.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 24, 375, 392, 640, 2401, 4802, 4913, 6400, 7744, 17576, 42592, 64000, 106496, 234256, 295936, 468750, 546875, 628864, 640000, 877952, 1124864, 1966080, 2839714, 3687936, 4687500, 4816896, 4952198, 6400000, 6453888
Offset: 1

Views

Author

Joseph L. Pe, Feb 18 2002

Keywords

Comments

The product of the distinct prime factors of n (the squarefree kernel of n) is also denoted by rad(n) = A007947(n). - Giovanni Resta, Apr 21 2017

Examples

			The prime factors of 375 are 3,5, which have product = 15, the sum of the digits of 375, so 375 is a term of the sequence.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Times@@ (First/@ FactorInteger[n]); g[n_] := Plus @@ IntegerDigits[n]; Select[Range[10^5], f[#] == g[#] &] (* or *)
    nd=12; up=10^nd; L={1}; Do[If[SquareFreeQ[su], ps = First /@ FactorInteger[su]; nps = Length@ ps; Clear[ric]; ric[n_, i_] := Block[{e = 0, m}, If[i > nps, If[Plus @@ IntegerDigits[su n] == su, Sow[su n]], While[ (m = n ps[[i]]^e ) su < up, ric[m, i+1]; e++]]]; z = Reap[ ric[1, 1]][[2]]; If[z != {}, L = Union[L, z[[1]]]]], {su, 2, 9 nd}]; L (* fast, terms < 10^12, Giovanni Resta, Apr 21 2017 *)
    Select[Range[65*10^5],Times@@FactorInteger[#][[All,1]]==Total[ IntegerDigits[ #]]&] (* Harvey P. Dale, Dec 16 2018 *)
  • PARI
    isok(k)={vecprod(factor(k)[,1]) == sumdigits(k)} \\ Harry J. Smith, May 06 2010

Extensions

a(19)-a(35) from Donovan Johnson, Sep 29 2009
a(1)=1 prepended by Giovanni Resta, Apr 21 2017

A070275 Numbers k such that the sum of the digits of k equals the sum of the prime divisors of k.

Original entry on oeis.org

2, 3, 5, 7, 84, 160, 250, 336, 468, 735, 936, 975, 1344, 1375, 1408, 1600, 1694, 1872, 2352, 2401, 2500, 2625, 2808, 3744, 3920, 4116, 4913, 5145, 5616, 6084, 6318, 7296, 7497, 7695, 8424, 8624, 8664, 8704, 9126, 9639, 10240, 12168, 12636, 12675, 14896
Offset: 1

Views

Author

Benoit Cloitre, May 09 2002

Keywords

Comments

If k=10^s*m is a term of the sequence where s > 0 and gcd(m,10)=1, then for each positive integer j, 10^j*m is in the sequence, because the sum of the digits of 10^j*k equals the sum of the digits of k and the sum of the distinct prime factors of 10^j*k equals the sum of the distinct prime factors of k. Also it is obvious that m isn't in the sequence. [Jahangeer Kholdi, Oct 07 2013]

Crossrefs

Programs

  • Mathematica
    Rest[Select[Range[20000],Total[Transpose[FactorInteger[#]][[1]]] == Total[ IntegerDigits[#]] &]] (* Harvey P. Dale, Dec 15 2010 *)
  • PARI
    isok(n) = sumdigits(n) == vecsum(factor(n)[,1]); \\ Michel Marcus, May 27 2018

A070274 Numbers n such that sum of digits of n equals the squarefree part of n.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 12, 24, 100, 150, 200, 300, 320, 375, 500, 600, 640, 700, 704, 735, 832, 960, 1014, 1088, 1200, 1815, 2023, 2400, 2535, 2940, 3549, 3610, 3840, 4046, 4335, 4913, 5054, 5376, 5415, 5491, 6069, 6137, 6358, 6647, 7260, 7581, 7942, 8959, 9386
Offset: 1

Views

Author

Benoit Cloitre, May 09 2002

Keywords

Comments

The squarefree part of x, core(x), is the smallest integer such that x*core(x) is a square.

Crossrefs

Programs

  • Mathematica
    core[n_]:=Block[{f=FactorInteger[n], p, e}, {p, e} = Transpose[f]; Times@@ (p^Mod[e, 2])]; Select[Range[10^4], core[#] == Plus @@ IntegerDigits[#] &] (* Giovanni Resta, Apr 21 2017 *)
  • PARI
    list(lim)=my(v=List()); forfactored(n=1,lim\1, if(core(n)==sumdigits(n[1]), listput(v,n[1]))); Vec(v) \\ Charles R Greathouse IV, Nov 05 2017

Extensions

Data corrected by Giovanni Resta, Apr 21 2017

A285494 Numbers k such that digit sum of k = number of distinct prime factors of k.

Original entry on oeis.org

20, 30, 102, 120, 200, 300, 1002, 1200, 2000, 2001, 2002, 3000, 3010, 10001, 10002, 10011, 10030, 10120, 11001, 11020, 11110, 12000, 20000, 20001, 21010, 30000, 30030, 30100, 100001, 100030, 100101, 100130, 100210, 100300, 101001, 101101, 101200, 102102, 110001, 110200
Offset: 1

Views

Author

Jonathan Frech, Apr 19 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[2,10000],Total[IntegerDigits[#]]==Length[FactorInteger[#]]&] (* or *)
    nd = 10; s = 1; Sort@ Flatten@ Reap[ While[ Times @@ Prime[ Range@ s] < 10^nd, pa = IntegerPartitions[s, {nd}, Range[0, 9]]; Do[Sow@ Select[ FromDigits /@ Permutations[p], PrimeNu[#] == s &], {p, pa}]; s++]][[2, 1]] (* terms < 10^10, Giovanni Resta, Apr 21 2017 *)
  • PARI
    isok(n) = sumdigits(n) == omega(n); \\ Michel Marcus, Apr 20 2017

Extensions

More terms from Michel Marcus, Apr 20 2017

A050690 Sum of digits of zero-absent composite a(n) equals number of prime factors.

Original entry on oeis.org

12, 32, 1152, 11232, 13122, 14112, 21312, 111132, 112112, 3121152, 11231232, 11354112, 812122112, 1251213312, 2211121152, 2211213312, 5121114112, 26122125312, 56321114112, 62214111232, 431711322112, 3421411213312, 11111212122112, 11112113242112
Offset: 1

Views

Author

Patrick De Geest, Aug 15 1999

Keywords

Comments

10^11 < a(21) <= 431711322112. a(22) <= 3421411213312. - Donovan Johnson, May 30 2010
Do all terms end in 2, i.e., is each term = 2 mod 10? - Harvey P. Dale, May 26 2024

Examples

			E.g., 21312 (no zero in the string) gives 2+1+3+1+2 = 9 prime factors, namely, 2*2*2*2*2*2*3*3*37.
		

Crossrefs

Programs

  • Mathematica
    t={}; Do[If[FreeQ[x=IntegerDigits[n],0]&&PrimeOmega[n]==Total[x],AppendTo[t,n]],{n,2,3220000,2}]; t (* Jayanta Basu, May 30 2013 *)

Extensions

a(15)-a(20) from Donovan Johnson, May 30 2010
a(21)-a(22) confirmed by Giovanni Resta, Jun 02 2013
a(23)-a(24) from Giovanni Resta, Apr 23 2017

A280911 Numbers n such that sum of decimal digits of n equals number of prime divisors of n counted with multiplicity and sum of distinct decimal digits of n equals number of distinct primes dividing n.

Original entry on oeis.org

30, 102, 1002, 1012, 1210, 2001, 2120, 3010, 10002, 10030, 20001, 20112, 20120, 100012, 100030, 101020, 102010, 110020, 110120, 120001, 121120, 200001, 200120, 211100, 221120, 230010, 300010, 320320, 400010, 400140, 1000002, 1000012, 1000140, 1000230, 1001020, 1003002, 1004010, 1010120, 1011300, 1013310, 1021100
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 10 2017

Keywords

Comments

Numbers n such that A007953(n) = A001222(n) and A217928(n) = A001221(n).

Examples

			20112 is in the sequence because 20112 = 2^4*3*419  (6 prime factors, 3 distinct), 2 + 0 + 1 + 1 + 2 = 6 and 2 + 0 + 1 = 3.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1100000], Total[IntegerDigits[#1]] == PrimeOmega[#1] && Total[Union[IntegerDigits[#1]]] == PrimeNu[#1] &]

A383971 Triprimes with sum of digits 3.

Original entry on oeis.org

12, 30, 102, 1002, 2001, 10002, 10011, 11001, 20001, 100101, 101001, 110001, 200001, 1000002, 10001001, 10010001, 11000001, 20000001, 100000101, 1000000011, 1000001001, 1000010001, 1000100001, 1001000001, 1010000001, 10000000002, 10000000011, 10000010001, 11000000001, 100000000101, 100000001001
Offset: 1

Views

Author

Robert Israel, May 16 2025

Keywords

Comments

Numbers that are the product of 3 primes, counted with multiplicity, and whose sum of decimal digits is 3.
Since all terms are divisible by 3, the only term ending with 0 is 30. All others are of the form 10^i + 10^j + 1 with 0 <= j <= i.
For each d from 2 to at least 71, there is at least one term with d digits.
Includes 10^k + 2 for k in A076850.
All terms except 12 are squarefree.
All even terms are Zumkeller numbers (A083207). - Ivan N. Ianakiev, May 18 2025

Examples

			a(4) = 1002 is a term because 1+0+0+2 = 3 and 1002 = 2 * 3 * 167 is the product of 3 primes, counted with multiplicity.
		

Crossrefs

Intersection of any two of A014612, A050689, and A052217.

Programs

  • Maple
    istriprime:= proc(n) local F;
      F:= ifactors(n,easy)[2];
      if not hastype(F,symbol) then return convert(F[..,2],`+`)=3 fi;
      F:= remove(hastype,F,symbol);
      if nops(F) > 1 or (nops(F) = 1 and F[1,2] > 1) then return false fi;
      numtheory:-bigomega(n) = 3
    end proc:
    R:= 12, 30:
    for d from 3 to 30 do
      V:= select(istriprime, [seq(seq(10^(d-1) + 10^j + 1,j=0..d-1)]);
      R:= R,op(V);
    od:
    R;
  • Mathematica
    s={30};imax=11;Do[n=10^i+10^j+1;If[PrimeOmega[n]==3,AppendTo[s,n]],{i,0,imax},{j,0,i}];Sort[s] (* James C. McMahon, Jun 01 2025 *)

A376157 Numbers k such that the sum of the digits of k equals the sum of its prime factors plus the sum of the multiplicities of each prime factor.

Original entry on oeis.org

4, 25, 36, 54, 125, 192, 289, 297, 343, 392, 448, 676, 756, 1089, 1536, 1764, 1936, 2646, 2888, 3872, 4802, 4860, 6174, 6250, 6776, 6860, 7290, 7488, 7680, 8750, 8775, 9408, 9747, 10648, 14739, 15309, 16848, 18432, 18865, 21296, 22869, 25725, 29988, 33750, 33957
Offset: 1

Views

Author

Jordan Brooks, Sep 12 2024

Keywords

Examples

			For k = 54, its prime factorization is 2^1*3^3: 5+4 = 2+1+3+3 = 9.
For k = 756, its prime factorization is 2^2*3^3*7^1: 7+5+6 = 2+2+3+3+7+1 = 18.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[34000], DigitSum[#]==Total[Flatten[FactorInteger[#]]] &] (* Stefano Spezia, Sep 14 2024 *)
  • PARI
    isok(k)={my(f=factor(k)); vecsum(f[,1]) + vecsum(f[,2]) == sumdigits(k)} \\ Andrew Howroyd, Sep 26 2024
  • Python
    from sympy.ntheory import factorint
    c = 2
    while c < 10000:
        charsum = 0
        for char in str(c):
            charsum += int(char)
        pf = factorint(c)
        cand = 0
        for p in pf.keys():
            cand += p
            cand += pf[p]
        if charsum == cand:
            print(c)
            print(pf)
        c += 1
    

Formula

{ k : A007953(k) = A008474(k) }.
Showing 1-9 of 9 results.