cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A134879 Decimal expansion of Sum_{k>=1} 1/(k^3)^(k^3).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 5, 9, 6, 0, 4, 6, 4, 4, 7, 7, 5, 3, 9, 0, 6, 2, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 5, 5, 1, 6, 5, 2, 3, 3, 7, 2, 8, 4, 5, 8, 8, 8, 8, 8, 3, 7, 9, 8, 9, 7, 5, 9, 3, 7, 6, 8, 3, 7, 2, 0, 8, 4, 9, 2, 0, 2, 8, 5, 0, 1, 1, 5, 8, 4, 6, 2, 0, 8, 2, 0, 3, 7, 4, 9, 4, 4, 6, 3, 3, 8, 5, 6, 0, 8, 4, 0, 0
Offset: 1

Views

Author

Artur Jasinski, Nov 14 2007

Keywords

Comments

Sum_{k>=1} 1/(k^3)^(k^3) = 1.00000005960464477539062500000000000000225516523372...

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sum[1/(n^3)^(n^3), {n, 1, 30}], 200]][[1]]
  • PARI
    suminf(n=1,n^(-3*n^3)) \\ Charles R Greathouse IV, Dec 26 2011

A008972 n^2 raised to power n^2.

Original entry on oeis.org

1, 256, 387420489, 18446744073709551616, 88817841970012523233890533447265625, 106387358923716524807713475752456393740167855629859291136
Offset: 1

Views

Author

Keywords

Comments

Since (x^n)^m = x^(nm) then (n^2)^(n^2) = n^(2*(n^2)). - Jonathan Vos Post, Mar 08 2010

Crossrefs

Programs

Formula

a(n) = A000312(A000290(n)). - Reinhard Zumkeller, Mar 20 2009
a(n) = n^(2*(n^2)). - Jonathan Vos Post, Mar 08 2010
a(n) = [x^(n^2)] 1/(1 - n^2*x). - Ilya Gutkovskiy, Oct 10 2017
Sum_{n>=1} 1/a(n) = A134878. - Amiram Eldar, Nov 13 2020

A134880 Decimal expansion of Sum_{k>=1} 1/(2^k)^(2^k).

Original entry on oeis.org

2, 5, 3, 9, 0, 6, 3, 0, 9, 6, 0, 4, 6, 4, 4, 7, 7, 5, 4, 4, 4, 8, 3, 5, 1, 0, 8, 6, 2, 4, 2, 7, 5, 2, 2, 1, 7, 0, 0, 3, 7, 2, 6, 4, 0, 0, 4, 4, 1, 8, 1, 3, 1, 3, 3, 3, 7, 0, 7, 2, 6, 6, 4, 5, 8, 5, 4, 1, 1, 9, 7, 7, 3, 3, 5, 5, 9, 0, 7, 7, 9, 3, 6, 0, 9, 7, 6, 6, 9, 0, 4, 0, 1
Offset: 0

Views

Author

Artur Jasinski, Nov 14 2007

Keywords

Examples

			0.25390630960464477544483510862427522170037264004418131333707266458541197733559...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sum[1/(2^n)^(2^n), {n, 1, 30}], 200]][[1]]
  • PARI
    suminf(k=1, 1/(2^k)^(2^k)) \\ Michel Marcus, Jan 15 2021

A134883 Decimal expansion of Sum_{n>=1} 1/(n^n+1).

Original entry on oeis.org

7, 3, 9, 9, 4, 7, 9, 4, 3, 4, 9, 5, 4, 6, 5, 5, 1, 2, 2, 5, 6, 0, 2, 5, 5, 3, 0, 7, 3, 4, 9, 9, 4, 7, 8, 2, 0, 5, 6, 1, 1, 0, 6, 6, 5, 7, 4, 2, 2, 4, 3, 9, 6, 2, 8, 7, 4, 5, 4, 5, 6, 5, 1, 9, 9, 9, 8, 0, 4, 3, 0, 8, 5, 4, 0, 8, 4, 8, 8, 1, 0, 2, 8, 9, 7, 3, 9, 5, 3, 1, 1, 2, 0, 7, 1, 2, 1, 5, 6, 8, 2, 0, 5, 9
Offset: 0

Views

Author

Artur Jasinski, Nov 15 2007

Keywords

Comments

Constant formed from sum of reversed Sierpinski numbers of first kind A014566.

Examples

			0.7399479434954655122560255307349947820561106657422439628745456519998...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sum[1/(n^n + 1), {n, 1, 150}], 100]][[1]] (* first zero removed *)

A134881 Decimal expansion of Sum_{k>=1} 1/(e^k)^(e^k).

Original entry on oeis.org

0, 6, 5, 9, 8, 8, 4, 1, 7, 7, 4, 3, 3, 4, 3, 7, 9, 1, 7, 5, 6, 5, 6, 2, 3, 8, 6, 7, 2, 4, 1, 0, 7, 7, 9, 7, 4, 3, 8, 1, 4, 4, 4, 3, 9, 3, 4, 1, 2, 1, 3, 1, 0, 2, 6, 2, 8, 0, 5, 4, 3, 6, 6, 5, 5, 9, 9, 9, 8, 5, 2, 0, 7, 6, 6, 0, 7, 1, 5, 7, 1, 2, 7, 8, 5, 1, 1, 2, 0, 0, 8, 1, 9, 4, 3, 6, 0, 7, 7, 0, 2
Offset: 0

Views

Author

Artur Jasinski, Nov 14 2007

Keywords

Examples

			0.06598841774334379175656238672410779743814443934121...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sum[1/(E^n)^(E^n), {n, 1, 20}], 200]][[1]] (* first two zeros removed *)

A134882 Decimal expansion of Sum_{x>=1} 1/(Pi^x)^(Pi^x).

Original entry on oeis.org

0, 2, 7, 4, 2, 5, 6, 9, 3, 2, 7, 6, 9, 9, 1, 3, 7, 8, 2, 8, 1, 1, 6, 1, 1, 9, 4, 8, 4, 3, 1, 2, 0, 8, 3, 2, 6, 8, 2, 2, 5, 5, 9, 5, 3, 8, 8, 0, 5, 7, 8, 9, 0, 7, 0, 9, 9, 8, 8, 1, 7, 4, 4, 3, 1, 0, 1, 6, 1, 3, 8, 6, 5, 0, 3, 8, 8, 4, 7, 4, 4, 5, 7, 6, 3, 0, 8, 4, 3, 8, 8, 3, 2, 9, 1, 7, 4, 4, 7, 1, 1
Offset: 0

Views

Author

Artur Jasinski, Nov 14 2007

Keywords

Examples

			0.02742569327699137828116119484312083268225595388057...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sum[1/(Pi^n)^(Pi^n), {n, 1, 20}], 200]][[1]] (* first two zeros removed *)
Showing 1-6 of 6 results.