A069895
2^a(n) divides (2n)^(2n): exponent of 2 in (2n)^(2n).
Original entry on oeis.org
2, 8, 6, 24, 10, 24, 14, 64, 18, 40, 22, 72, 26, 56, 30, 160, 34, 72, 38, 120, 42, 88, 46, 192, 50, 104, 54, 168, 58, 120, 62, 384, 66, 136, 70, 216, 74, 152, 78, 320, 82, 168, 86, 264, 90, 184, 94, 480, 98, 200, 102, 312, 106, 216, 110, 448, 114, 232, 118, 360, 122
Offset: 1
-
function A069895List(length)
a = zeros(Int, length)
for n in 1:length a[n] = 2 * (isodd(n) ? n : n + a[div(n, 2)]) end
a end
A069895List(61) |> println # Peter Luschny, Oct 16 2021
-
a:= 2*n*padic[ordp](2*n, 2):
seq(a(n), n=1..61); # Alois P. Heinz, Oct 14 2021
-
Table[ Part[ Flatten[ FactorInteger[n^n]], 2], {n, 2, 124, 2}]
-
a(n) = n<<=1; n*valuation(n,2); \\ Kevin Ryde, Oct 14 2021
-
def A069895(n): return n*(n&-n).bit_length()<<1 # Chai Wah Wu, Jul 11 2022
A246070
Number A(n,k) of endofunctions f on [2n] satisfying f^k(i) = i for all i in [n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 4, 1, 2, 256, 1, 3, 16, 46656, 1, 2, 50, 216, 16777216, 1, 3, 36, 1626, 4096, 10000000000, 1, 2, 56, 1440, 83736, 100000, 8916100448256, 1, 3, 16, 2688, 84624, 6026120, 2985984, 11112006825558016, 1, 2, 70, 720, 215760, 7675200, 571350096, 105413504, 18446744073709551616
Offset: 0
Square array A(n,k) begins:
0 : 1, 1, 1, 1, 1, 1, ...
1 : 4, 2, 3, 2, 3, 2, ...
2 : 256, 16, 50, 36, 56, 16, ...
3 : 46656, 216, 1626, 1440, 2688, 720, ...
4 : 16777216, 4096, 83736, 84624, 215760, 94816, ...
5 : 10000000000, 100000, 6026120, 7675200, 24899120, 11218000, ...
Cf.
A246072 (the same for permutations).
-
with(numtheory): with(combinat): M:=multinomial:
b:= proc(n, k, p) local l, g; l, g:= sort([divisors(p)[]]),
proc(k, m, i, t) option remember; local d, j; d:= l[i];
`if`(i=1, n^m, add(M(k, k-(d-t)*j, (d-t)$j)/j!*
(d-1)!^j *M(m, m-t*j, t$j) *g(k-(d-t)*j, m-t*j,
`if`(d-t=1, [i-1, 0], [i, t+1])[]), j=0..min(k/(d-t),
`if`(t=0, [][], m/t))))
end; g(k, n-k, nops(l), 0)
end:
A:= (n, k)-> `if`(k=0, (2*n)^(2*n), b(2*n, n, k)):
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
multinomial[n_, k_List] := n!/Times @@ (k!); M = multinomial;
b[n_, k0_, p_] := Module[{l, g}, l = Divisors[p];
g[k_, m_, i_, t_] := g[k, m, i, t] = Module[{d, j}, d = l[[i]];
If[i == 1, If[m == 0, 1, n^m], Sum[M[k, Join[{k - (d - t)*j},
Table[d - t, {j}]]]/j!*If[j == 0, 1, (d - 1)!^j]*M[m, Join[{m - t*j},
Array[t&, j]]]*g[k - (d - t)*j, m - t*j, Sequence @@
If[d - t == 1, {i - 1, 0}, {i, t + 1}]], {j, 0, Min[k/(d - t),
If[t == 0, {}, m/t]]}]]];
g[k0, n - k0, Length[l], 0]];
A[n_, k_] := If[k == 0, If[n == 0, 1, (2n)^(2n)], b[2*n, n, k]];
Table[A[n, d - n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 27 2016, after Alois P. Heinz, updated Jan 01 2021 *)
Original entry on oeis.org
1, 2, 120, 20880, 7244160, 4193683200, 3648171985920, 4450790792448000, 7251098441261875200, 15208619045076276019200, 39919072914444753469440000, 128188338317208930555828633600, 494389344738688341547326898176000, 2255096937522349816552823932846080000
Offset: 0
If n = 1 a(n) = 2, a(n)/(2*n)^(2*n) = 1/2. If we toss two coins we obtain one of the four ordered pairs: (H,H), (H,T), (T,H), or (T,T). The probability of a forest is 1/2, and the expected value of trials until a forest is 2.
-
T:= proc(n, m) option remember; `if`(n<0, 0, `if`(n=m, 1,
`if`(m<1 or m>n, 0, add(binomial(n-1, j-1)*j^(j-2)*
T(n-j, m-1), j=1..n-m+1))))
end:
a:= n-> T(2*n, n)*n!*2^n:
seq(a(n), n=0..14); # Alois P. Heinz, Jun 24 2021
-
Array[(-1)^#*HypergeometricPFQ[{1 - 2 #, -#}, {1, -2 #}, 4 #]*(2 #)! &, 7] (* Michael De Vlieger, Feb 07 2020, after Vaclav Kotesovec at A302112 *)
-
A302112(n) = { \\ From Jon E. Schoenfield's formula in A302112.
sum(j = 0, n, (-1/2)^j * binomial(n, j) * binomial(2*n-1, n+j-1) * (2*n)^(n-j) * (n+j)!) / n! };
a(n) = A302112(n) * n! * 2^n;
A085529
a(n) = (2n+1)^(2n+1).
Original entry on oeis.org
1, 27, 3125, 823543, 387420489, 285311670611, 302875106592253, 437893890380859375, 827240261886336764177, 1978419655660313589123979, 5842587018385982521381124421, 20880467999847912034355032910567, 88817841970012523233890533447265625, 443426488243037769948249630619149892803
Offset: 0
Cf.
A000312,
A005408,
A016754,
A085527,
A085528,
A085530,
A085531,
A085532,
A085533,
A085534,
A085535.
A132637
Composite number C(n) raised to power C(n).
Original entry on oeis.org
256, 46656, 16777216, 387420489, 10000000000, 8916100448256, 11112006825558016, 437893890380859375, 18446744073709551616, 39346408075296537575424, 104857600000000000000000000, 5842587018385982521381124421, 341427877364219557396646723584
Offset: 1
-
With[{nn=25},#^#&/@Complement[Range[2,nn],Prime[Range[PrimePi[nn]]]]] (* Harvey P. Dale, Aug 21 2011 *)
A356568
a(n) = (4^n - 1)*n^(2*n).
Original entry on oeis.org
0, 3, 240, 45927, 16711680, 9990234375, 8913923665920, 11111328602485167, 18446462598732840960, 39346257980661240576303, 104857500000000000000000000, 341427795961470170556885610263, 1333735697353436921058237339402240, 6156119488473827117528057630000587767
Offset: 0
For n=1, the functions are f1: (1,1),(2,1); f2: (1,2),(2,2); f3: (1,2),(2,1).
Showing 1-6 of 6 results.
Comments