cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A046882 Ultrafactorials: a(n) = n!^n!.

Original entry on oeis.org

1, 1, 4, 46656, 1333735776850284124449081472843776
Offset: 0

Views

Author

Camillo Lamonaca (Camillo.Lamonaca(AT)dva.gov.au)

Keywords

Comments

a(5) = 3175 042373 780336 892901 667920 556557 182493 442088 021222 004926 225128 381629 943118 937129 098831 435345 716937 405655 305190 657814 877412 786176 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000. - Jonathan Vos Post, Dec 09 2004
Note that, by analogy with factorial primes, subfactorial primes, superfactorial primes and hyperfactorial primes, if a(n)+1 or a(n)-1 is prime, it should be called an ultrafactorial prime. These begin: a(0)+1 = a(1)+1 = 2, a(2)-1 = 3, a(2)+1 = 5. Are there any more? Note that a(3) = 46657 = 13 * 37 * 97 is a 3-brilliant number. a(3)-5, a(3)-3 and a(3)+5 are semiprime; a(3)-7 and a(3)+7 are primes. - Jonathan Vos Post, Dec 09 2004

Crossrefs

Programs

Formula

Sum_{n>=1} 1/a(n) = A100085. - Amiram Eldar, Nov 11 2020

A134877 Decimal expansion of Sum_{k>=1} 1/(k!!)^(k!!).

Original entry on oeis.org

1, 2, 8, 7, 0, 3, 7, 0, 9, 6, 6, 4, 1, 6, 8, 1, 8, 1, 4, 7, 1, 1, 3, 2, 0, 2, 9, 7, 5, 5, 8, 2, 0, 4, 2, 5, 9, 0, 4, 2, 1, 6, 9, 5, 5, 3, 4, 0, 2, 2, 2, 0, 8, 1, 0, 2, 6, 7, 9, 8, 7, 6, 5, 9, 2, 6, 9, 0, 9, 9, 7, 3, 0, 0, 3, 5, 1, 8, 6, 6, 5, 4, 1, 9, 3, 0, 7, 3, 6, 8, 0, 1, 0, 8, 8, 0, 8, 3, 9, 3, 7, 7, 8, 7, 5
Offset: 1

Views

Author

Artur Jasinski, Nov 14 2007

Keywords

Examples

			Sum_{k>=1} 1/(k!!)^(k!!) = 1.28703709664168181471132029755820425904216955340222081026798765926909...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sum[1/n^n, {n, 1, 100}], 200]][[1]]

A134878 Decimal expansion of Sum_{k>=1} 1/(k^2)^(k^2).

Original entry on oeis.org

1, 0, 0, 3, 9, 0, 6, 2, 5, 2, 5, 8, 1, 1, 7, 4, 7, 9, 1, 7, 6, 7, 4, 0, 7, 2, 9, 0, 6, 1, 4, 3, 0, 6, 7, 4, 1, 0, 7, 6, 1, 2, 4, 9, 2, 4, 3, 7, 9, 2, 8, 5, 9, 4, 7, 8, 7, 6, 4, 0, 4, 7, 9, 0, 7, 9, 5, 0, 9, 9, 2, 1, 9, 0, 5, 0, 8, 6, 9, 4, 4, 5, 1, 6, 6, 8, 8, 4, 0, 2, 7, 3, 4, 8, 3, 4, 4, 6, 9, 6, 6, 8, 8, 5
Offset: 1

Views

Author

Artur Jasinski, Nov 14 2007

Keywords

Comments

Sum_{k>=1} 1/(k^2)^(k^2) = 1.003906252581174791767407290614306741076124924379285...

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sum[1/(n^2)^(n^2), {n, 1, 30}], 200]][[1]]

Formula

Equals Sum_{n>=1} 1/A008972(n). - R. J. Mathar, Jul 31 2025

A134879 Decimal expansion of Sum_{k>=1} 1/(k^3)^(k^3).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 5, 9, 6, 0, 4, 6, 4, 4, 7, 7, 5, 3, 9, 0, 6, 2, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 5, 5, 1, 6, 5, 2, 3, 3, 7, 2, 8, 4, 5, 8, 8, 8, 8, 8, 3, 7, 9, 8, 9, 7, 5, 9, 3, 7, 6, 8, 3, 7, 2, 0, 8, 4, 9, 2, 0, 2, 8, 5, 0, 1, 1, 5, 8, 4, 6, 2, 0, 8, 2, 0, 3, 7, 4, 9, 4, 4, 6, 3, 3, 8, 5, 6, 0, 8, 4, 0, 0
Offset: 1

Views

Author

Artur Jasinski, Nov 14 2007

Keywords

Comments

Sum_{k>=1} 1/(k^3)^(k^3) = 1.00000005960464477539062500000000000000225516523372...

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sum[1/(n^3)^(n^3), {n, 1, 30}], 200]][[1]]
  • PARI
    suminf(n=1,n^(-3*n^3)) \\ Charles R Greathouse IV, Dec 26 2011

A134880 Decimal expansion of Sum_{k>=1} 1/(2^k)^(2^k).

Original entry on oeis.org

2, 5, 3, 9, 0, 6, 3, 0, 9, 6, 0, 4, 6, 4, 4, 7, 7, 5, 4, 4, 4, 8, 3, 5, 1, 0, 8, 6, 2, 4, 2, 7, 5, 2, 2, 1, 7, 0, 0, 3, 7, 2, 6, 4, 0, 0, 4, 4, 1, 8, 1, 3, 1, 3, 3, 3, 7, 0, 7, 2, 6, 6, 4, 5, 8, 5, 4, 1, 1, 9, 7, 7, 3, 3, 5, 5, 9, 0, 7, 7, 9, 3, 6, 0, 9, 7, 6, 6, 9, 0, 4, 0, 1
Offset: 0

Views

Author

Artur Jasinski, Nov 14 2007

Keywords

Examples

			0.25390630960464477544483510862427522170037264004418131333707266458541197733559...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sum[1/(2^n)^(2^n), {n, 1, 30}], 200]][[1]]
  • PARI
    suminf(k=1, 1/(2^k)^(2^k)) \\ Michel Marcus, Jan 15 2021

A134883 Decimal expansion of Sum_{n>=1} 1/(n^n+1).

Original entry on oeis.org

7, 3, 9, 9, 4, 7, 9, 4, 3, 4, 9, 5, 4, 6, 5, 5, 1, 2, 2, 5, 6, 0, 2, 5, 5, 3, 0, 7, 3, 4, 9, 9, 4, 7, 8, 2, 0, 5, 6, 1, 1, 0, 6, 6, 5, 7, 4, 2, 2, 4, 3, 9, 6, 2, 8, 7, 4, 5, 4, 5, 6, 5, 1, 9, 9, 9, 8, 0, 4, 3, 0, 8, 5, 4, 0, 8, 4, 8, 8, 1, 0, 2, 8, 9, 7, 3, 9, 5, 3, 1, 1, 2, 0, 7, 1, 2, 1, 5, 6, 8, 2, 0, 5, 9
Offset: 0

Views

Author

Artur Jasinski, Nov 15 2007

Keywords

Comments

Constant formed from sum of reversed Sierpinski numbers of first kind A014566.

Examples

			0.7399479434954655122560255307349947820561106657422439628745456519998...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sum[1/(n^n + 1), {n, 1, 150}], 100]][[1]] (* first zero removed *)

A134881 Decimal expansion of Sum_{k>=1} 1/(e^k)^(e^k).

Original entry on oeis.org

0, 6, 5, 9, 8, 8, 4, 1, 7, 7, 4, 3, 3, 4, 3, 7, 9, 1, 7, 5, 6, 5, 6, 2, 3, 8, 6, 7, 2, 4, 1, 0, 7, 7, 9, 7, 4, 3, 8, 1, 4, 4, 4, 3, 9, 3, 4, 1, 2, 1, 3, 1, 0, 2, 6, 2, 8, 0, 5, 4, 3, 6, 6, 5, 5, 9, 9, 9, 8, 5, 2, 0, 7, 6, 6, 0, 7, 1, 5, 7, 1, 2, 7, 8, 5, 1, 1, 2, 0, 0, 8, 1, 9, 4, 3, 6, 0, 7, 7, 0, 2
Offset: 0

Views

Author

Artur Jasinski, Nov 14 2007

Keywords

Examples

			0.06598841774334379175656238672410779743814443934121...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sum[1/(E^n)^(E^n), {n, 1, 20}], 200]][[1]] (* first two zeros removed *)

A134882 Decimal expansion of Sum_{x>=1} 1/(Pi^x)^(Pi^x).

Original entry on oeis.org

0, 2, 7, 4, 2, 5, 6, 9, 3, 2, 7, 6, 9, 9, 1, 3, 7, 8, 2, 8, 1, 1, 6, 1, 1, 9, 4, 8, 4, 3, 1, 2, 0, 8, 3, 2, 6, 8, 2, 2, 5, 5, 9, 5, 3, 8, 8, 0, 5, 7, 8, 9, 0, 7, 0, 9, 9, 8, 8, 1, 7, 4, 4, 3, 1, 0, 1, 6, 1, 3, 8, 6, 5, 0, 3, 8, 8, 4, 7, 4, 4, 5, 7, 6, 3, 0, 8, 4, 3, 8, 8, 3, 2, 9, 1, 7, 4, 4, 7, 1, 1
Offset: 0

Views

Author

Artur Jasinski, Nov 14 2007

Keywords

Examples

			0.02742569327699137828116119484312083268225595388057...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sum[1/(Pi^n)^(Pi^n), {n, 1, 20}], 200]][[1]] (* first two zeros removed *)
Showing 1-8 of 8 results.