cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A073009 Decimal expansion of Sum_{n >= 1} 1/n^n.

Original entry on oeis.org

1, 2, 9, 1, 2, 8, 5, 9, 9, 7, 0, 6, 2, 6, 6, 3, 5, 4, 0, 4, 0, 7, 2, 8, 2, 5, 9, 0, 5, 9, 5, 6, 0, 0, 5, 4, 1, 4, 9, 8, 6, 1, 9, 3, 6, 8, 2, 7, 4, 5, 2, 2, 3, 1, 7, 3, 1, 0, 0, 0, 2, 4, 4, 5, 1, 3, 6, 9, 4, 4, 5, 3, 8, 7, 6, 5, 2, 3, 4, 4, 5, 5, 5, 5, 8, 8, 1, 7, 0, 4, 1, 1, 2, 9, 4, 2, 9, 7, 0, 8, 9, 8, 4, 9, 9
Offset: 1

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Examples

			1.291285997062663540407282590595600541498619368...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.11, p. 449.

Crossrefs

Cf. A077178 (continued fraction expansion).

Programs

  • Maple
    evalf(Sum(1/n^n, n=1..infinity), 120); # Vaclav Kotesovec, Jun 24 2016
  • Mathematica
    RealDigits[N[Sum[1/n^n, {n, 1, Infinity}], 110]] [[1]]
  • PARI
    suminf(n=1,n^-n) \\ Charles R Greathouse IV, Apr 25 2012

Formula

Equals Integral_{x = 0..1} dx/x^x.
Constant also equals the double integral Integral_{y = 0..1} Integral_{x = 0..1} 1/(x*y)^(x*y) dx dy. - Peter Bala, Mar 04 2012
Approximately log(3)^e, see Munroe link. - Charles R Greathouse IV, Apr 25 2012
Another approximation is A + A^(-19), where A is Glaisher-Kinkelin constant (A074962). - Noam Shalev, Jan 16 2015
From Petros Hadjicostas, Jun 29 2020: (Start)
Equals -Integral_{x=0..1, y=0..1} dx dy/((x*y)^(x*y)*log(x*y)). (Apply Theorem 1 or Theorem 2 of Glasser (2019) to the integral Integral_{x = 0..1} dx/x^x.)
Equals -Integral_{x=0..1} log(x)/x^x dx. (Apply Theorem 1 or Theorem 2 of Glasser (2019) to the double integral of Peter Bala above.) (End)

A245637 Decimal expansion of Integral_{x = 1..infinity} 1/x^x dx.

Original entry on oeis.org

7, 0, 4, 1, 6, 9, 9, 6, 0, 4, 3, 7, 4, 7, 4, 4, 6, 0, 0, 1, 1, 4, 4, 2, 1, 0, 7, 8, 5, 7, 1, 2, 3, 8, 1, 0, 5, 8, 7, 5, 9, 7, 2, 6, 8, 6, 9, 3, 4, 5, 6, 5, 5, 5, 4, 7, 8, 2, 9, 7, 6, 1, 5, 8, 4, 6, 0, 8, 7, 0, 7, 8, 3, 8, 1, 3, 3, 1, 9, 0, 7, 5, 0, 8, 1, 3, 7, 8, 8, 6, 6, 6, 0, 0, 3, 4, 1, 6, 8, 0, 7, 3, 1, 7
Offset: 0

Views

Author

Jean-François Alcover, Jul 28 2014

Keywords

Examples

			0.704169960437474460011442107857123810587597268693456555478297615846...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 4.6 Fransén-Robinson Constant, p. 263.

Crossrefs

Programs

  • Mathematica
    NIntegrate[1/x^x, {x, 1, Infinity}, WorkingPrecision -> 104] // RealDigits // First

Formula

Equals A229191 - A073009. - Vaclav Kotesovec, Jul 28 2014
From Peter Bala, Nov 10 2019: (Start)
Equals Integral_{x = 1..oo} x*(1 + log(x))/x^x dx - 1.
Equals Integral_{x = 1..oo} x*(1 - log^2(x))/x^x dx.
Conjecturally, equals 1 - Integral_{x = 1..oo, y = 1..oo} 1/(x*y)^(x*y) dx dy. [added Dec 21 2022: follows from Glasser's Theorem 1.] (End)
From Peter Bala, Dec 21 2022: (Start)
Equals 1 - Integral_{x = 1..oo} log(x)/x^x dx (since d/d(1/x^x) = -(1 + log(x))/x^x).
Equals the Borel sum of the divergent series 1 - 1^1 + 2^2 - 3^3 + 4^4 - .... See Watson, Section 5. Compare with the convergent series 1/1^1 - 1/2^2 + 1/3^3 - 1/4^4 + ... = Integral_{x = 0..1} x^x dx. See A083648.
More generally, for nonnegative integers a and b, the divergent series Sum_{n >= 0} (-1)^n*(a*n + b)^n is Borel summable to Integral_{x = 1..oo} x^(a-b-1)/x^(x^a) dx. (End)

A319830 Decimal expansion of Integral_{0..oo} (x^(1/x-x)) dx.

Original entry on oeis.org

1, 3, 2, 0, 7, 3, 0, 4, 0, 0, 8, 6, 9, 6, 3, 6, 6, 6, 5, 4, 8, 8, 6, 1, 4, 8, 2, 7, 7, 8, 0, 7, 2, 6, 2, 0, 7, 5, 2, 3, 2, 4, 4, 7, 9, 5, 1, 8, 2, 5, 9, 6, 0, 7, 0, 6, 6, 7, 8, 7, 8, 5, 8, 5, 8, 6, 6, 3, 0, 3, 4, 9, 7, 2, 9, 7, 7, 2, 4, 3, 7, 4, 8, 1, 2, 5, 0, 3, 8, 5, 9, 2, 1, 9, 6, 6, 7, 2, 1, 7, 3, 9, 1, 7, 4
Offset: 1

Views

Author

Sam Coutteau, Sep 28 2018

Keywords

Examples

			1.3207304008696366654886148277807262075232447951825960706678785858663...
		

Crossrefs

Cf. A229191.

Programs

  • Maple
    evalf(Int(x^(1/x-x), x = 0..infinity), 120);
  • Mathematica
    RealDigits[NIntegrate[x^(1/x - x), {x, 0, Infinity}, WorkingPrecision -> 120]][[1]] (* Vaclav Kotesovec, Jan 15 2019 *)

Formula

Equals Integral_{0..oo} (x^(1/x-x)) dx (definition).
Equals Integral_{0..1} (x^(1/x-x) * (1 + 1/x^2) ) dx.
Equals Integral_{0..oo} ( (x + sqrt(x^2 + 4))/2 )^(-x) dx.

Extensions

More terms from Vaclav Kotesovec, Jan 15 2019
Showing 1-3 of 3 results.