cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245644 Numbers n such that n^3 is an arithmetic number.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 14, 15, 17, 19, 21, 23, 24, 29, 31, 33, 35, 37, 39, 41, 42, 43, 46, 47, 51, 52, 53, 55, 56, 57, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 77, 79, 80, 83, 85, 87, 89, 91, 93, 94, 95, 97, 101, 103, 105, 107, 109, 111, 113, 114, 115, 117, 119, 120, 123, 127, 129, 131, 133, 137, 138, 139
Offset: 1

Views

Author

R. J. Mathar, Jul 28 2014

Keywords

Comments

A065091 is a subsequence.

Crossrefs

Programs

  • Haskell
    a245644 n = a245644_list !! (n-1)
    a245644_list = filter ((== 1) . a245656 . (^ 3)) [1..]
    -- Reinhard Zumkeller, Jul 28 2014
    
  • Maple
    isArithPow := proc(n,e)
        local dvs,d ;
        dvs := numtheory[divisors](n^e) ;
        add(d,d=dvs)/nops(dvs) ;
        if type(%,'integer') then
            true;
        else
            false;
        end if;
    end proc:
    for n to 300 do
        if isArithPow(n,3) then
            printf("%d,",n) ;
        end if;
    end do:
  • Mathematica
    Select[Range[120], IntegerQ[DivisorSigma[1, #^3 ]/DivisorSigma[0, #^3 ]] &] (* Michael De Vlieger, Aug 05 2014 after Stefan Steinerberger at A003601 *)
  • Python
    from sympy import divisors, divisor_count
    [n for n in range(1,10**3) if not sum(divisors(n**3)) % divisor_count(n**3)] # Chai Wah Wu, Aug 04 2014

Formula

A245656(a(n)^3) = 1. - Reinhard Zumkeller, Jul 28 2014