A245644 Numbers n such that n^3 is an arithmetic number.
1, 3, 5, 7, 11, 13, 14, 15, 17, 19, 21, 23, 24, 29, 31, 33, 35, 37, 39, 41, 42, 43, 46, 47, 51, 52, 53, 55, 56, 57, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 77, 79, 80, 83, 85, 87, 89, 91, 93, 94, 95, 97, 101, 103, 105, 107, 109, 111, 113, 114, 115, 117, 119, 120, 123, 127, 129, 131, 133, 137, 138, 139
Offset: 1
Keywords
Links
- Reinhard Zumkeller and Jens Kruse Andersen, Table of n, a(n) for n = 1..10000 (first 147 terms from Reinhard Zumkeller)
- Wikipedia, Arithmetic number
Programs
-
Haskell
a245644 n = a245644_list !! (n-1) a245644_list = filter ((== 1) . a245656 . (^ 3)) [1..] -- Reinhard Zumkeller, Jul 28 2014
-
Maple
isArithPow := proc(n,e) local dvs,d ; dvs := numtheory[divisors](n^e) ; add(d,d=dvs)/nops(dvs) ; if type(%,'integer') then true; else false; end if; end proc: for n to 300 do if isArithPow(n,3) then printf("%d,",n) ; end if; end do:
-
Mathematica
Select[Range[120], IntegerQ[DivisorSigma[1, #^3 ]/DivisorSigma[0, #^3 ]] &] (* Michael De Vlieger, Aug 05 2014 after Stefan Steinerberger at A003601 *)
-
Python
from sympy import divisors, divisor_count [n for n in range(1,10**3) if not sum(divisors(n**3)) % divisor_count(n**3)] # Chai Wah Wu, Aug 04 2014
Formula
A245656(a(n)^3) = 1. - Reinhard Zumkeller, Jul 28 2014
Comments