cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245692 Number T(n,k) of endofunctions f on [n] that are self-inverse on [k] but not on [k+1]; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 12, 7, 4, 4, 144, 62, 28, 12, 10, 2000, 695, 264, 100, 40, 26, 32400, 9504, 3126, 1050, 370, 130, 76, 605052, 154007, 44716, 13458, 4256, 1366, 456, 232, 12845056, 2891776, 751872, 204776, 58784, 17292, 5272, 1624, 764
Offset: 0

Views

Author

Alois P. Heinz, Jul 29 2014

Keywords

Comments

T(n,k) counts endofunctions f:{1,...,n}-> {1,...,n} with f(f(i))=i for all i in {1,...,k} and f(f(k+1))<>k+1 if k

Examples

			T(3,1) = 7: (1,1,1), (1,1,2), (1,1,3), (1,3,1), (1,3,3), (3,1,1), (3,3,1).
T(3,2) = 4: (1,2,1), (1,2,2), (2,1,1), (2,1,2).
T(3,3) = 4: (1,2,3), (1,3,2), (2,1,3), (3,2,1).
Triangle T(n,k) begins:
0 :       1;
1 :       0,      1;
2 :       1,      1,     2;
3 :      12,      7,     4,     4;
4 :     144,     62,    28,    12,   10;
5 :    2000,    695,   264,   100,   40,   26;
6 :   32400,   9504,  3126,  1050,  370,  130,  76;
7 :  605052, 154007, 44716, 13458, 4256, 1366, 456, 232;
     ...
		

Crossrefs

Column k=0 gives A076728 for n>1.
Row sums give A000312.
Main diagonal gives A000085.
Cf. A245348, A245693 (the same for permutations).

Programs

  • Maple
    g:= proc(n) g(n):= `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end:
    H:= (n, k)-> add(binomial(n-k, i)*binomial(k, i)*i!*
                 g(k-i)*n^(n-k-i), i=0..min(k, n-k)):
    T:= (n, k)-> H(n, k) -H(n, k+1):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    g[n_] := g[n] = If[n<2, 1, g[n-1] + (n-1)*g[n-2]]; H[0, 0] = 1; H[n_, k_] := Sum[Binomial[n-k, i]*Binomial[k, i]*i!*g[k-i]*n^(n-k-i), {i, 0, Min[k, n-k]}]; T[n_, k_] := H[n, k] - H[n, k+1]; Table[T[n, k], {n, 0, 10}, { k, 0, n}] // Flatten (* Jean-François Alcover, Feb 19 2017, translated from Maple *)

Formula

T(n,k) = A245348(n,k) - A245348(n,k+1).