cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A076728 a(n) = (n-1)^2 * n^(n-2).

Original entry on oeis.org

0, 1, 12, 144, 2000, 32400, 605052, 12845056, 306110016, 8100000000, 235794769100, 7492001071104, 258071096741328, 9581271191425024, 381454233398437500, 16212958658533785600, 732780301186512843008, 35096024486915738763264, 1775645341922275908244236
Offset: 1

Views

Author

Benoit Cloitre, Oct 25 2002

Keywords

Comments

Smallest integer value of the form 1/z(k,n) where z(k,x)=x/(x-1)^2 -sum(i=1,k,i/x^i).
For any x>1 lim k -> infinity z(k,x)=0. More generally if p is an integer >=2, 1/z(u(k),p) is an integer for any k>=2 where u(k)=(p-1)^2*p^((p^k-(p-1)*k-p)/(p-1)). u(k) can also be written : u(k)=(p-1)^2 *p^(1+p+p^2+...+p^(k-2)).
For n>=2, a(n) is equal to the number of functions f:{1,2,...,n}->{1,2,...,n} such that for fixed, different x_1, x_2 in {1,2,...,n} and fixed y_1, y_2 in {1,2,...,n} we have f(x_1)<>y_1 and f(x_2)<> y_2. - Milan Janjic, May 10 2007
a(n+1) = Sum_{k=0...n} binomial(n,k)*n^k*k, which enumerates the total number of elements in the domain of definition over all partial functions on n labeled objects. - Geoffrey Critzer, Feb 08 2012
Also, the number of possible negation tables in the n-valued logics (cf. A262458 and A262459). - Max Alekseyev, Sep 23 2015

Crossrefs

Column k=0 of A245692.

Programs

  • Mathematica
    Table[Sum[Binomial[n,k] n^k k, {k,0,n}], {n,1,20}] (* Geoffrey Critzer, Feb 08 2012 *)
  • PARI
    a(n) = (n-1)^2*n^(n-2)

Extensions

a(1)=0 prepended by Max Alekseyev, Sep 23 2015
Some terms corrected by Alois P. Heinz, May 22 2016

A245348 Number T(n,k) of endofunctions f on [n] that are self-inverse on [k]; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 4, 3, 2, 27, 15, 8, 4, 256, 112, 50, 22, 10, 3125, 1125, 430, 166, 66, 26, 46656, 14256, 4752, 1626, 576, 206, 76, 823543, 218491, 64484, 19768, 6310, 2054, 688, 232, 16777216, 3932160, 1040384, 288512, 83736, 24952, 7660, 2388, 764
Offset: 0

Views

Author

Alois P. Heinz, Jul 18 2014

Keywords

Comments

T(n,k) counts endofunctions f:{1,...,n}-> {1,...,n} with f(f(i))=i for all i in {1,...,k}.

Examples

			T(3,1) = 15: (1,1,1), (2,1,1), (3,1,1), (1,2,1), (3,2,1), (1,3,1), (3,3,1), (1,1,2), (2,1,2), (1,2,2), (1,3,2), (1,1,3), (2,1,3), (1,2,3), (1,3,3).
T(3,2) = 8: (2,1,1), (1,2,1), (3,2,1), (2,1,2), (1,2,2), (1,3,2), (2,1,3), (1,2,3).
T(3,3) = 4: (3,2,1), (1,3,2), (2,1,3), (1,2,3).
Triangle T(n,k) begins:
0 :       1;
1 :       1,      1;
2 :       4,      3,     2;
3 :      27,     15,     8,     4;
4 :     256,    112,    50,    22,   10;
5 :    3125,   1125,   430,   166,   66,   26;
6 :   46656,  14256,  4752,  1626,  576,  206,  76;
7 :  823543, 218491, 64484, 19768, 6310, 2054, 688, 232;
     ...
		

Crossrefs

Columns k=0-1 give: A000312, A089945(n-1) for n>0.
Main diagonal gives A000085.
T(2n,n) gives A245141.

Programs

  • Maple
    g:= proc(n) g(n):= `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end:
    T:= (n, k)-> add(binomial(n-k, i)*binomial(k, i)*i!*
                 g(k-i)*n^(n-k-i), i=0..min(k, n-k)):
    seq(seq(T(n,k), k=0..n), n=0..10);
  • Mathematica
    g[n_] := g[n] = If[n<2, 1, g[n-1] + (n-1)*g[n-2]]; T[0, 0] = 1; T[n_, k_] := Sum[Binomial[n-k, i]*Binomial[k, i]*i!*g[k-i]*n^(n-k-i), {i, 0, Min[k, n-k]}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 19 2017, translated from Maple *)

Formula

T(n,k) = Sum_{i=0..min(k,n-k)} C(n-k,i)*C(k,i)*i!*A000085(k-i)*n^(n-k-i).

A245693 Number T(n,k) of permutations on [n] that are self-inverse on [k] but not on [k+1]; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 2, 0, 0, 4, 12, 2, 0, 0, 10, 72, 18, 4, 0, 0, 26, 480, 120, 36, 8, 0, 0, 76, 3600, 840, 264, 84, 20, 0, 0, 232, 30240, 6480, 1920, 648, 216, 52, 0, 0, 764, 282240, 55440, 15120, 4920, 1776, 612, 152, 0, 0, 2620, 2903040, 524160, 131040, 39600, 13920, 5232, 1848, 464, 0, 0, 9496
Offset: 0

Views

Author

Alois P. Heinz, Jul 29 2014

Keywords

Comments

T(n,k) counts permutations p:{1,...,n}-> {1,...,n} with p(p(i))=i for all i in {1,...,k} and p(p(k+1))<>k+1 if k

Examples

			Triangle T(n,k) begins:
0 :      1;
1 :      0,    1;
2 :      0,    0,    2;
3 :      2,    0,    0,   4;
4 :     12,    2,    0,   0,  10;
5 :     72,   18,    4,   0,   0, 26;
6 :    480,  120,   36,   8,   0,  0, 76;
7 :   3600,  840,  264,  84,  20,  0,  0, 232;
8 :  30240, 6480, 1920, 648, 216, 52,  0,   0, 764;
		

Crossrefs

Column k=0 give A062119(n-1) for n>1.
Row sums give A000142.
Main diagonal gives A000085.
Cf. A245692 (the same for endofunctions).

Programs

  • Maple
    g:= proc(n) g(n):= `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end:
    H:= (n, k)-> add(binomial(n-k, i)*binomial(k, i)*i!*
                 g(k-i)*(n-k-i)!, i=0..min(k, n-k)):
    T:= (n, k)-> H(n, k) -H(n, k+1):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    g[n_] := g[n] = If[n < 2, 1, g[n - 1] + (n - 1)*g[n - 2]];
    H[n_, k_] := Sum[Binomial[n - k, i]*Binomial[k, i]*i!*
         g[k - i]*(n - k - i)!, {i, 0, Min[k, n - k]}];
    T[n_, k_] := H[n, k] - H[n, k + 1];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 10 2021, after Alois P. Heinz *)

Formula

T(n,k) = H(n,k) - H(n,k+1) with H(n,k) = Sum_{i=0..min(k,n-k)} C(n-k,i) * C(k,i) * i! * A000085(k-i) * (n-k-i)!.
Showing 1-3 of 3 results.