cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A089945 Main diagonal of array A089944, in which the n-th row is the n-th binomial transform of the natural numbers.

Original entry on oeis.org

1, 3, 15, 112, 1125, 14256, 218491, 3932160, 81310473, 1900000000, 49516901511, 1424099377152, 44804009850925, 1530735634132992, 56439656982421875, 2233785415175766016, 94459960699823921169, 4250383588380798812160, 202774313738037680879743
Offset: 0

Views

Author

Paul D. Hanna, Nov 23 2003

Keywords

Comments

a(n) is the number of labeled trees on n+1 nodes with a designated node or edge. - Geoffrey Critzer, Mar 25 2017

Crossrefs

Programs

  • Magma
    [(2*n+1)*(n+1)^(n-1): n in [0..50]]; // G. C. Greubel, Nov 16 2017
  • Mathematica
    nn = 30; T[z_] = -LambertW[-z]; Drop[Range[0, nn]! CoefficientList[Series[T[z] + T[z]^2/2, {z, 0, nn}], z], 1] (* Geoffrey Critzer, Mar 25 2017 *)
    Table[(2 n + 1) (n + 1)^(n - 1), {n, 0, 18}] (* Michael De Vlieger, Mar 25 2017 *)
  • PARI
    a(n)=if(n<0,0,(2*n+1)*(n+1)^(n-1))
    

Formula

a(n) = (2*n+1)*(n+1)^(n-1).
E.g.f.: (-LambertW(-x)/x)*(1-LambertW(-x))/(1+LambertW(-x)).

A239771 Number of pairs of functions (f,g) from a size n set into itself satisfying f(x) = g(g(f(x))).

Original entry on oeis.org

1, 1, 10, 213, 8056, 465945, 37823616, 4075467781, 560230714240, 95369455852497, 19643693349548800, 4805295720474420501, 1374890520609054683136, 454286686896040037996905, 171479277693049020232695808, 73262491601904459123264721125, 35143072854722729593790081499136
Offset: 0

Views

Author

Chad Brewbaker, Mar 26 2014

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) g(n):= `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end:
    a:= n-> add(binomial(n, k)*Stirling2(n, k)*k!*
            add(binomial(n-k, i)*binomial(k, i)*i!*
            g(k-i)*n^(n-k-i), i=0..min(k, n-k)), k=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 18 2014
  • Mathematica
    g[n_] := g[n] = If[n < 2, 1, g[n-1] + (n-1)*g[n-2]];
    a[n_] := If[n == 0, 1, Sum[Binomial[n, k]*StirlingS2[n, k]*k!*Sum[ Binomial[n-k, i]*Binomial[k, i]*i!*g[k-i]*n^(n-k-i), {i, 0, Min[k, n-k]} ], {k, 0, n}]];
    a /@ Range[0, 20] (* Jean-François Alcover, Oct 03 2019, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=0..n} C(n,k) * A048993(n,k) * k! * A245348(n,k). - Alois P. Heinz, Jul 18 2014

Extensions

a(6)-a(7) from Giovanni Resta, Mar 28 2014
a(8)-a(16) from Alois P. Heinz, Jul 18 2014

A245692 Number T(n,k) of endofunctions f on [n] that are self-inverse on [k] but not on [k+1]; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 12, 7, 4, 4, 144, 62, 28, 12, 10, 2000, 695, 264, 100, 40, 26, 32400, 9504, 3126, 1050, 370, 130, 76, 605052, 154007, 44716, 13458, 4256, 1366, 456, 232, 12845056, 2891776, 751872, 204776, 58784, 17292, 5272, 1624, 764
Offset: 0

Views

Author

Alois P. Heinz, Jul 29 2014

Keywords

Comments

T(n,k) counts endofunctions f:{1,...,n}-> {1,...,n} with f(f(i))=i for all i in {1,...,k} and f(f(k+1))<>k+1 if k

Examples

			T(3,1) = 7: (1,1,1), (1,1,2), (1,1,3), (1,3,1), (1,3,3), (3,1,1), (3,3,1).
T(3,2) = 4: (1,2,1), (1,2,2), (2,1,1), (2,1,2).
T(3,3) = 4: (1,2,3), (1,3,2), (2,1,3), (3,2,1).
Triangle T(n,k) begins:
0 :       1;
1 :       0,      1;
2 :       1,      1,     2;
3 :      12,      7,     4,     4;
4 :     144,     62,    28,    12,   10;
5 :    2000,    695,   264,   100,   40,   26;
6 :   32400,   9504,  3126,  1050,  370,  130,  76;
7 :  605052, 154007, 44716, 13458, 4256, 1366, 456, 232;
     ...
		

Crossrefs

Column k=0 gives A076728 for n>1.
Row sums give A000312.
Main diagonal gives A000085.
Cf. A245348, A245693 (the same for permutations).

Programs

  • Maple
    g:= proc(n) g(n):= `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end:
    H:= (n, k)-> add(binomial(n-k, i)*binomial(k, i)*i!*
                 g(k-i)*n^(n-k-i), i=0..min(k, n-k)):
    T:= (n, k)-> H(n, k) -H(n, k+1):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    g[n_] := g[n] = If[n<2, 1, g[n-1] + (n-1)*g[n-2]]; H[0, 0] = 1; H[n_, k_] := Sum[Binomial[n-k, i]*Binomial[k, i]*i!*g[k-i]*n^(n-k-i), {i, 0, Min[k, n-k]}]; T[n_, k_] := H[n, k] - H[n, k+1]; Table[T[n, k], {n, 0, 10}, { k, 0, n}] // Flatten (* Jean-François Alcover, Feb 19 2017, translated from Maple *)

Formula

T(n,k) = A245348(n,k) - A245348(n,k+1).

A245141 Number of endofunctions f on [2n] that are self-inverse on [n].

Original entry on oeis.org

1, 3, 50, 1626, 83736, 6026120, 571350096, 67996818960, 9862902275456, 1700092943088768, 342087177215788800, 79115601821198404352, 20779757607847901690880, 6133520505473954148381696, 2017134796016735182500521984, 733523863838078950241395968000
Offset: 0

Author

Alois P. Heinz, Jul 21 2014

Keywords

Comments

a(n) counts endofunctions f:{1,...,2n}-> {1,...,2n} with f(f(i))=i for all i in {1,...,n}.

Examples

			a(1) = 3: (1,1), (1,2), (2,1).
		

Crossrefs

Column k=2 of A246070.

Programs

  • Maple
    g:= proc(n) g(n):= `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end:
    a:= n-> add(binomial(n, i)^2*i!*g(n-i)*(2*n)^(n-i), i=0..n):
    seq(a(n), n=0..20);
  • Mathematica
    Join[{1}, Table[n! * Sum[Binomial[n,k] * 2^k * n^k* Sum[1/((k - 2*j)!*2^j*j!), {j, 0, Floor[k/2]}], {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, Dec 05 2021 *)

Formula

a(n) = Sum_{i=0..n} C(n,i)^2 * i! * A000085(n-i) * (2*n)^(n-i).
a(n) = A245348(2n,n).
Showing 1-4 of 4 results.