cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A089946 Secondary diagonal of array A089944, in which the n-th row is the n-th binomial transform of the natural numbers.

Original entry on oeis.org

1, 4, 24, 200, 2160, 28812, 458752, 8503056, 180000000, 4287177620, 113515167744, 3308603804376, 105288694411264, 3632897460937500, 135107988821114880, 5388090449900829728, 229385780960233586688, 10383890888434362036516, 498073600000000000000000
Offset: 0

Views

Author

Paul D. Hanna, Nov 23 2003

Keywords

Comments

Also the hyperbinomial transform of A089945 (the main diagonal of A089944): a(n) = Sum_{k=0..n} C(n,k)*(n-k+1)^(n-k-1)*A089945(k).
With offset 1, a(n) = total number of children of the root in all (n+1)^(n-1) trees on {0,1,2,...,n} rooted at 0. For example, with edges directed away from the root, the trees on {0,1,2} are {0->1,0->2},{0->1->2},{0->2->1} and contain a total of a(2)=4 children of 0. - David Callan, Feb 01 2007
With offset 1, a(n) is the number of labeled rooted trees in all rooted forests on n nodes. The E.g.f. is B(T(x)) where B(x)=x*exp(x) and T(x) is Euler's tree function. - Geoffrey Critzer, Oct 07 2011

Crossrefs

A diagonal of A259334.

Programs

  • Magma
    [2*(n+1) * (n+2)^(n-1): n in [0..50]]; // G. C. Greubel, Nov 14 2017
  • Mathematica
    t=Sum[n^(n-1)x^n/n!, {n,1,20}]; Drop[Range[0,20]!*CoefficientList[ Series[t*Exp[t], {x,0,20}], x], 1] (* Geoffrey Critzer, Oct 07 2011 *)
    Table[2*(n+1)*(n+2)^(n-1), {n, 0, 50}] (* G. C. Greubel, Nov 14 2017 *)
  • PARI
    a(n)=if(n<0,0,2*(n+1)*(n+2)^(n-1));
    

Formula

a(n) = 2*(n+1) * (n+2)^(n-1).
a(n) = Sum_{k=0..n} C(n, k) * (n-k+1)^(n-k-1) * (2*k+1) * (k+1)^(k-1).
E.g.f.: (-LambertW(x)/x)^2 * (1 - LambertW(x)) / (1 + LambertW(x)).

A245348 Number T(n,k) of endofunctions f on [n] that are self-inverse on [k]; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 4, 3, 2, 27, 15, 8, 4, 256, 112, 50, 22, 10, 3125, 1125, 430, 166, 66, 26, 46656, 14256, 4752, 1626, 576, 206, 76, 823543, 218491, 64484, 19768, 6310, 2054, 688, 232, 16777216, 3932160, 1040384, 288512, 83736, 24952, 7660, 2388, 764
Offset: 0

Views

Author

Alois P. Heinz, Jul 18 2014

Keywords

Comments

T(n,k) counts endofunctions f:{1,...,n}-> {1,...,n} with f(f(i))=i for all i in {1,...,k}.

Examples

			T(3,1) = 15: (1,1,1), (2,1,1), (3,1,1), (1,2,1), (3,2,1), (1,3,1), (3,3,1), (1,1,2), (2,1,2), (1,2,2), (1,3,2), (1,1,3), (2,1,3), (1,2,3), (1,3,3).
T(3,2) = 8: (2,1,1), (1,2,1), (3,2,1), (2,1,2), (1,2,2), (1,3,2), (2,1,3), (1,2,3).
T(3,3) = 4: (3,2,1), (1,3,2), (2,1,3), (1,2,3).
Triangle T(n,k) begins:
0 :       1;
1 :       1,      1;
2 :       4,      3,     2;
3 :      27,     15,     8,     4;
4 :     256,    112,    50,    22,   10;
5 :    3125,   1125,   430,   166,   66,   26;
6 :   46656,  14256,  4752,  1626,  576,  206,  76;
7 :  823543, 218491, 64484, 19768, 6310, 2054, 688, 232;
     ...
		

Crossrefs

Columns k=0-1 give: A000312, A089945(n-1) for n>0.
Main diagonal gives A000085.
T(2n,n) gives A245141.

Programs

  • Maple
    g:= proc(n) g(n):= `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end:
    T:= (n, k)-> add(binomial(n-k, i)*binomial(k, i)*i!*
                 g(k-i)*n^(n-k-i), i=0..min(k, n-k)):
    seq(seq(T(n,k), k=0..n), n=0..10);
  • Mathematica
    g[n_] := g[n] = If[n<2, 1, g[n-1] + (n-1)*g[n-2]]; T[0, 0] = 1; T[n_, k_] := Sum[Binomial[n-k, i]*Binomial[k, i]*i!*g[k-i]*n^(n-k-i), {i, 0, Min[k, n-k]}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 19 2017, translated from Maple *)

Formula

T(n,k) = Sum_{i=0..min(k,n-k)} C(n-k,i)*C(k,i)*i!*A000085(k-i)*n^(n-k-i).

A089944 Square array, read by antidiagonals, where the n-th row is the n-th binomial transform of the natural numbers, with T(0,k) = (k+1) for k>=0.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 8, 4, 1, 5, 20, 15, 5, 1, 6, 48, 54, 24, 6, 1, 7, 112, 189, 112, 35, 7, 1, 8, 256, 648, 512, 200, 48, 8, 1, 9, 576, 2187, 2304, 1125, 324, 63, 9, 1, 10, 1280, 7290, 10240, 6250, 2160, 490, 80, 10, 1, 11, 2816, 24057, 45056, 34375, 14256, 3773, 704, 99, 11, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 23 2003

Keywords

Comments

The main diagonal is A089945: {T(n,n)=(2*n+1)*(n+1)^(n-1), n>=0}; the hyperbinomial transform of the main diagonal is the next lower diagonal in the array (A089946): {T(n+1,n) = 2*(n+1)*(n+2)^(n-1), n>=0}.

Examples

			Rows begin:
  {1, 2, 3, 4, 5, 6, 7,..},
  {1, 3, 8, 20, 48, 112, 256,..},
  {1, 4, 15, 54, 189, 648, 2187,..},
  {1, 5, 24, 112, 512, 2304, 10240,..},
  {1, 6, 35, 200, 1125, 6250, 34375,..},
  {1, 7, 48, 324, 2160, 14256, 93312,..},
  {1, 8, 63, 490, 3773, 28812, 218491,..},..
		

Crossrefs

Programs

  • Mathematica
    A089944[n_, k_] := (k + n + 1)*(n + 1)^(k - 1);
    Table[A089944[k, n - k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 13 2025 *)
  • PARI
    T(n,k)=if(n<0 || k<0,0,(k+n+1)*(n+1)^(k-1))

Formula

T(n,k) = (k+n+1)*(n+1)^(k-1).
E.g.f.: (1+x)*exp(x)/(1-y*exp(x)).
Showing 1-3 of 3 results.