cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A089945 Main diagonal of array A089944, in which the n-th row is the n-th binomial transform of the natural numbers.

Original entry on oeis.org

1, 3, 15, 112, 1125, 14256, 218491, 3932160, 81310473, 1900000000, 49516901511, 1424099377152, 44804009850925, 1530735634132992, 56439656982421875, 2233785415175766016, 94459960699823921169, 4250383588380798812160, 202774313738037680879743
Offset: 0

Views

Author

Paul D. Hanna, Nov 23 2003

Keywords

Comments

a(n) is the number of labeled trees on n+1 nodes with a designated node or edge. - Geoffrey Critzer, Mar 25 2017

Crossrefs

Programs

  • Magma
    [(2*n+1)*(n+1)^(n-1): n in [0..50]]; // G. C. Greubel, Nov 16 2017
  • Mathematica
    nn = 30; T[z_] = -LambertW[-z]; Drop[Range[0, nn]! CoefficientList[Series[T[z] + T[z]^2/2, {z, 0, nn}], z], 1] (* Geoffrey Critzer, Mar 25 2017 *)
    Table[(2 n + 1) (n + 1)^(n - 1), {n, 0, 18}] (* Michael De Vlieger, Mar 25 2017 *)
  • PARI
    a(n)=if(n<0,0,(2*n+1)*(n+1)^(n-1))
    

Formula

a(n) = (2*n+1)*(n+1)^(n-1).
E.g.f.: (-LambertW(-x)/x)*(1-LambertW(-x))/(1+LambertW(-x)).

A276911 E.g.f. A(x) satisfies: A(A( x*exp(-x) )) = x*exp(x).

Original entry on oeis.org

1, 2, 6, 28, 180, 1446, 13888, 156472, 2034000, 29724490, 476806176, 8502508884, 174802753216, 3768345692398, 63300353418240, 1386349221087856, 149879079531401472, 5097575010920072850, -780487993325688128000, -32524149870689487270260, 10927977097616993825596416, 490896441869732669067535414, -213936255246865273137807851520, -10450262329586550037066790750808, 6047981224337998054714885264691200
Offset: 1

Views

Author

Paul D. Hanna, Sep 22 2016

Keywords

Comments

Former name was "Inverse of e.g.f. A(x) equals its conjugate, where A(x) = Sum_{n>=1} a(n)*i^(n-1)*x^n/n! and i=sqrt(-1)." - Paul D. Hanna, Sep 06 2018

Examples

			E.g.f.: A(x) = x + 2*x^2/2! + 6*x^3/3! + 28*x^4/4! + 180*x^5/5! + 1446*x^6/6! + 13888*x^7/7! + 156472*x^8/8! + 2034000*x^9/9! + 29724490*x^10/10! + ...
such that A(A( x*exp(-x) )) = x*exp(x).
RELATED SERIES.
Let F(x) = x + 2*I*x^2/2! - 6*x^3/3! - 28*I*x^4/4! + 180*x^5/5! + 1446*I*x^6/6! - 13888*x^7/7! - 156472*I*x^8/8! + 2034000*x^9/9! + 29724490*I*x^10/10! - 476806176*x^11/11! - 8502508884*I*x^12/12! + 174802753216*x^13/13! + 3768345692398*I*x^14/14! - 63300353418240*x^15/15! - 1386349221087856*I*x^16/16! + 149879079531401472*x^17/17! +...+ a(n)*i^(n-1)*x^n/n! +...
then
(a) Series_Reversion( F(x) ) = conjugate( F(x) ).
(b) F(x) = G(x)*exp(i*G(x)) where G(x) is the e.g.f. of A276910:
(c) G(x) = x - 3*x^3/3! + 85*x^5/5! - 6111*x^7/7! + 872649*x^9/9! - 195062395*x^11/11! + 76208072733*x^13/13! - 12330526252695*x^15/15! + 125980697776559377*x^17/17! + 857710566759117989133*x^19/19! + 11428318296234746748941925*x^21/21! +...+ A276910(n)*x^n/n! +...
where
G( F(x) ) = x + 2*I*x^2/2! - 9*x^3/3! - 64*I*x^4/4! + 625*x^5/5! + 7776*I*x^6/6! - 117649*x^7/7! - 2097152*I*x^8/8! +...+ -n^(n-1)*(-i)^(n-1)*x^n/n! +...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(V=[1],A=x,G=x); for(i=1,n\2+1, V = concat(V,[0,0]); G = sum(m=1,#V,V[m]*x^m/m!) +x*O(x^#V);
    A = G*exp(I*G); V[#V] = -(#V)!/2 * polcoeff( subst( A, x, conj(A) ),#V) ); n!*(-I)^(n-1)*polcoeff(A,n)}
    for(n=1,30,print1(a(n),", "))

Formula

E.g.f. A(x) satisfies: A(A( x*exp(-x) )) = x*exp(x). - Paul D. Hanna, Sep 06 2018
E.g.f. A(x) satisfies: A(-A(-x)) = x. - Paul D. Hanna, Sep 06 2018
Inverse of F(x) equals its conjugate, where F(x) = Sum_{n>=1} a(n)*i^(n-1)*x^n/n! and i=sqrt(-1).
Let G(x) be the e.g.f. of A276910, then F(x) = Sum_{n>=1} a(n)*i^(n-1)*x^n/n! satisfies:
(1) F(x) = G(x) * exp(i*G(x)).
(2) G( F(x) ) = i*LambertW(-i*x), where LambertW( x*exp(x) ) = x.
E.g.f. A(x) satisfies: A(A(x)) is e.g.f. of A089946 with offset 1. - Alexander Burstein, Jan 15 2022

Extensions

Name replaced with simpler formula by Paul D. Hanna, Sep 06 2018

A291203 Number F(n,h,t) of forests of t labeled rooted trees with n vertices such that h is the maximum of 0 and the tree heights; triangle of triangles F(n,h,t), n>=0, h=0..n, t=0..n-h, read by layers, then by rows.

Original entry on oeis.org

1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 1, 0, 3, 6, 0, 6, 0, 0, 0, 0, 0, 1, 0, 4, 24, 12, 0, 36, 24, 0, 24, 0, 0, 0, 0, 0, 0, 1, 0, 5, 80, 90, 20, 0, 200, 300, 60, 0, 300, 120, 0, 120, 0, 0, 0, 0, 0, 0, 0, 1, 0, 6, 240, 540, 240, 30, 0, 1170, 3000, 1260, 120, 0, 3360, 2520, 360, 0, 2520, 720, 0, 720, 0
Offset: 0

Views

Author

Alois P. Heinz, Aug 20 2017

Keywords

Comments

Positive elements in column t=1 give A034855.
Elements in rows h=0 give A023531.
Elements in rows h=1 give A059297.
Positive row sums per layer give A235595.
Positive column sums per layer give A061356.

Examples

			n h\t: 0   1   2  3  4 5 : A235595 : A061356          : A000272
-----+-------------------+---------+------------------+--------
0 0  : 1                 :         :                  : 1
-----+-------------------+---------+------------------+--------
1 0  : 0   1             :      1  :   .              :
1 1  : 0                 :         :   1              : 1
-----+-------------------+---------+------------------+--------
2 0  : 0   0   1         :      1  :   .   .          :
2 1  : 0   2             :      2  :   .              :
2 2  : 0                 :         :   2   1          : 3
-----+-------------------+---------+------------------+--------
3 0  : 0   0   0  1      :      1  :   .   .   .      :
3 1  : 0   3   6         :      9  :   .   .          :
3 2  : 0   6             :      6  :   .              :
3 3  : 0                 :         :   9   6   1      : 16
-----+-------------------+---------+------------------+--------
4 0  : 0   0   0  0  1   :      1  :   .   .   .  .   :
4 1  : 0   4  24 12      :     40  :   .   .   .      :
4 2  : 0  36  24         :     60  :   .   .          :
4 3  : 0  24             :     24  :   .              :
4 4  : 0                 :         :  64  48  12  1   : 125
-----+-------------------+---------+------------------+--------
5 0  : 0   0   0  0  0 1 :      1  :   .   .   .  . . :
5 1  : 0   5  80 90 20   :    195  :   .   .   .  .   :
5 2  : 0 200 300 60      :    560  :   .   .   .      :
5 3  : 0 300 120         :    420  :   .   .          :
5 4  : 0 120             :    120  :   .              :
5 5  : 0                 :         : 625 500 150 20 1 : 1296
-----+-------------------+---------+------------------+--------
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t, h) option remember; expand(`if`(n=0 or h=0, x^(t*n), add(
           binomial(n-1, j-1)*j*x^t*b(j-1, 0, h-1)*b(n-j, t, h), j=1..n)))
        end:
    g:= (n, h)-> b(n, 1, h)-`if`(h=0, 0, b(n, 1, h-1)):
    F:= (n, h, t)-> coeff(g(n, h), x, t):
    seq(seq(seq(F(n, h, t), t=0..n-h), h=0..n), n=0..8);
  • Mathematica
    b[n_, t_, h_] := b[n, t, h] = Expand[If[n == 0 || h == 0, x^(t*n), Sum[
         Binomial[n-1, j-1]*j*x^t*b[j-1, 0, h-1]*b[n-j, t, h], {j, 1, n}]]];
    g[n_, h_] := b[n, 1, h] - If[h == 0, 0, b[n, 1, h - 1]];
    F[n_, h_, t_] := Coefficient[g[n, h], x, t];
    Table[Table[Table[F[n, h, t], {t, 0, n - h}], {h, 0, n}], {n, 0, 8}] // Flatten (* Jean-François Alcover, Mar 17 2022, after Alois P. Heinz *)

Formula

Sum_{i=0..n} F(n,i,n-i) = A243014(n) = 1 + A038154(n).
Sum_{d=0..n} Sum_{i=0..d} F(n,i,d-i) = A000272(n+1).
Sum_{h=0..n} Sum_{t=0..n-h} t * F(n,h,t) = A089946(n-1) for n>0.
Sum_{h=0..n} Sum_{t=0..n-h} (h+1) * F(n,h,t) = A234953(n+1) for n>0.
Sum_{h=0..n} Sum_{t=0..n-h} (h+1)*(n+1) * F(n,h,t) = A001854(n+1) for n>0.
Sum_{t=0..n-1} F(n,1,t) = A235596(n+1).
F(2n,n,n) = A126804(n) for n>0.
F(n,0,n) = 1 = A000012(n).
F(n,1,1) = n = A001477(n) for n>1.
F(n,n-1,1) = n! = A000142(n) for n>0.
F(n,1,n-1) = A002378(n-1) for n>0.
F(n,2,1) = A000551(n).
F(n,3,1) = A000552(n).
F(n,4,1) = A000553(n).
F(n,1,2) = A001788(n-1) for n>2.
F(n,0,0) = A000007(n).

A298593 Triangle read by rows: T(n,k) = number of times the value k appears on the parking functions of length n.

Original entry on oeis.org

1, 4, 2, 24, 15, 9, 200, 136, 100, 64, 2160, 1535, 1215, 945, 625, 28812, 21036, 17286, 14406, 11526, 7776, 458752, 341103, 286671, 247296, 211456, 172081, 117649, 8503056, 6405904, 5464712, 4811528, 4251528, 3691528, 3038344, 2097152, 180000000, 136953279, 118078911, 105372819, 94921875, 85078125, 74627181, 61921089, 43046721
Offset: 1

Views

Author

Rui Duarte, Jan 22 2018

Keywords

Comments

T(n,k) is the number of pairs (f,i) such that f is a parking function and f(i) = k.

Examples

			Triangle begins:
====================================================================
n\k|       1       2       3       4       5       6       7       8
---|----------------------------------------------------------------
1  |       1
2  |       4       2
3  |      24      15       9
4  |     200     136     100      64
5  |    2160    1535    1215     945     625
6  |   28812   21036   17286   14406   11526    7776
7  |  458752  341103  286671  247296  211456  172081  117649
8  | 8503056 6405904 5464712 4811528 4251528 3691528 3038344 2097152
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[n Sum[Binomial[n - 1, j - 1] j^(j - 2)*(n + 1 - j)^(n - 1 - j), {j, k, n}], {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, Jan 22 2018 *)

Formula

T(n,k) = n*Sum_{j=k..n} binomial(n-1, j-1)*j^(j-2)*(n+1-j)^(n-1-j).
T(n,k) = n*A298592(n,k).
T(n,k) = n*Sum_{j=k..n} A298594(n,j).
T(n,k) = Sum_{j=k..n} A298597(n,j).
Sum_{k=1..n} T(n,k) = n*A000272(n+1).
T(n+1,1) = A089946(n), T(n,n) = A000169(n). - Andrey Zabolotskiy, Feb 21 2018

A089944 Square array, read by antidiagonals, where the n-th row is the n-th binomial transform of the natural numbers, with T(0,k) = (k+1) for k>=0.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 8, 4, 1, 5, 20, 15, 5, 1, 6, 48, 54, 24, 6, 1, 7, 112, 189, 112, 35, 7, 1, 8, 256, 648, 512, 200, 48, 8, 1, 9, 576, 2187, 2304, 1125, 324, 63, 9, 1, 10, 1280, 7290, 10240, 6250, 2160, 490, 80, 10, 1, 11, 2816, 24057, 45056, 34375, 14256, 3773, 704, 99, 11, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 23 2003

Keywords

Comments

The main diagonal is A089945: {T(n,n)=(2*n+1)*(n+1)^(n-1), n>=0}; the hyperbinomial transform of the main diagonal is the next lower diagonal in the array (A089946): {T(n+1,n) = 2*(n+1)*(n+2)^(n-1), n>=0}.

Examples

			Rows begin:
  {1, 2, 3, 4, 5, 6, 7,..},
  {1, 3, 8, 20, 48, 112, 256,..},
  {1, 4, 15, 54, 189, 648, 2187,..},
  {1, 5, 24, 112, 512, 2304, 10240,..},
  {1, 6, 35, 200, 1125, 6250, 34375,..},
  {1, 7, 48, 324, 2160, 14256, 93312,..},
  {1, 8, 63, 490, 3773, 28812, 218491,..},..
		

Crossrefs

Programs

  • Mathematica
    A089944[n_, k_] := (k + n + 1)*(n + 1)^(k - 1);
    Table[A089944[k, n - k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 13 2025 *)
  • PARI
    T(n,k)=if(n<0 || k<0,0,(k+n+1)*(n+1)^(k-1))

Formula

T(n,k) = (k+n+1)*(n+1)^(k-1).
E.g.f.: (1+x)*exp(x)/(1-y*exp(x)).

A259334 Triangle read by rows: T(n,k) = k*(n-1)!*n^(n-k-1)/(n-k)!, 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 3, 4, 2, 16, 24, 18, 6, 125, 200, 180, 96, 24, 1296, 2160, 2160, 1440, 600, 120, 16807, 28812, 30870, 23520, 12600, 4320, 720, 262144, 458752, 516096, 430080, 268800, 120960, 35280, 5040, 4782969, 8503056, 9920232, 8817984, 6123600, 3265920, 1270080, 322560, 40320
Offset: 1

Views

Author

N. J. A. Sloane, Jun 25 2015

Keywords

Examples

			Triangle begins:
     1;
     1,    1;
     3,    4,    2;
    16,   24,   18,    6;
   125,  200,  180,   96,   24;
  1296, 2160, 2160, 1440,  600,  120;
  ...
		

Crossrefs

Diagonals include A000272, A089946, A000142.
Cf. A000435.

Programs

  • PARI
    tabl(nn) = {for (n=1, nn, for (k=1, n, print1(k*(n-1)!*n^(n-k-1)/(n-k)!, ", ");); print(););} \\ Michel Marcus, Jun 26 2015

Formula

A000435(n) = Sum_{k=0..n-1} k*T(n,k). - David desJardins, Jan 22 2017

Extensions

More terms from Michel Marcus, Jun 26 2015

A225465 Triangular array read by rows: T(n, k) is the number of rooted forests on {1, 2, ..., n} in which one tree has been specially designated that contain exactly k trees; n >= 1, 1 <= k <= n.

Original entry on oeis.org

1, 2, 2, 9, 12, 3, 64, 96, 36, 4, 625, 1000, 450, 80, 5, 7776, 12960, 6480, 1440, 150, 6, 117649, 201684, 108045, 27440, 3675, 252, 7, 2097152, 3670016, 2064384, 573440, 89600, 8064, 392, 8, 43046721, 76527504, 44641044, 13226976, 2296350, 244944, 15876, 576, 9
Offset: 1

Views

Author

Geoffrey Critzer, May 08 2013

Keywords

Comments

Row sums = 2n*(n+1)^(n-2) = A089946(offset).
The average number of trees in each forest approaches 5/2 as n gets large.
The rows give the coefficients of the derivatives of the Abel polynomials. - Peter Luschny, Feb 22 2025

Examples

			    T(2,1)=2                  T(2,2)=2
  ...1'...   ...2'...   ...1'..2...   ...1..2'...
  ...| ...   ...| ...   ...........   ...........
  ...2 ...   ...1 ...   ...........   ...........
The root node is on top.  The ' indicates the tree which has been specially designated.
Triangle starts:
  [1]        1;
  [2]        2,        2;
  [3]        9,       12,        3;
  [4]       64,       96,       36,        4;
  [5]      625,     1000,      450,       80,       5;
  [6]     7776,    12960,     6480,     1440,     150,      6;
  [7]   117649,   201684,   108045,    27440,    3675,    252,     7;
  [8]  2097152,  3670016,  2064384,   573440,   89600,   8064,   392,   8;
  [9] 43046721, 76527504, 44641044, 13226976, 2296350, 244944, 15876, 576, 9;
		

Crossrefs

Cf. A061356, A089946 (row sums), A000169, A137452.

Programs

  • Mathematica
    Table[Table[Binomial[n - 1, k - 1] n^(n - k) k, {k, 1, n}], {n, 1, 8}] // Grid

Formula

T(n, k) = binomial(n-1, k-1)*n^(n-k)*k = A061356(n, k)*k(offset).
E.g.f.: y*A(x)*exp(y*A(x)) where A(x) is e.g.f. for A000169.
Showing 1-7 of 7 results.