cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A298592 Triangle read by rows: T(n,k) = number of parking functions of length n whose lead number is k.

Original entry on oeis.org

1, 2, 1, 8, 5, 3, 50, 34, 25, 16, 432, 307, 243, 189, 125, 4802, 3506, 2881, 2401, 1921, 1296, 65536, 48729, 40953, 35328, 30208, 24583, 16807, 1062882, 800738, 683089, 601441, 531441, 461441, 379793, 262144, 20000000, 15217031, 13119879, 11708091, 10546875, 9453125, 8291909, 6880121, 4782969
Offset: 1

Views

Author

Rui Duarte, Jan 22 2018

Keywords

Examples

			Triangle begins:
        1;
        2,      1;
        8,      5,      3;
       50,     34,     25,     16;
      432,    307,    243,    189,    125;
     4802,   3506,   2881,   2401,   1921,   1296;
    65536,  48729,  40953,  35328,  30208,  24583,  16807;
  1062882, 800738, 683089, 601441, 531441, 461441, 379793, 262144;
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n - 1, j - 1] j^(j - 2)*(n + 1 - j)^(n - 1 - j), {j, k, n}], {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, Jan 22 2018 *)

Formula

T(n,k) = Sum_{j=k..n} binomial(n-1, j-1)*j^(j-2)*(n+1-j)^(n-1-j).
T(n,k) = A298593(n,k)/n.
T(n,k) = Sum_{j=k..n} A298594(n,j).
T(n,k) = (Sum_{j=k..n} A298597(n,j))/n.
Sum_{k=1..n} T(n,k) = A000272(n+1).

A298594 Triangle read by rows: T(n,k) = number of parking functions a of length n such that a(1) = k and if we replace a(1) = k with k+1 we don't get a parking function.

Original entry on oeis.org

1, 1, 1, 3, 2, 3, 16, 9, 9, 16, 125, 64, 54, 64, 125, 1296, 625, 480, 480, 625, 1296, 16807, 7776, 5625, 5120, 5625, 7776, 16807, 262144, 117649, 81648, 70000, 70000, 81648, 117649, 262144, 4782969, 2097152, 1411788, 1161216, 1093750, 1161216, 1411788, 2097152, 4782969
Offset: 1

Views

Author

Rui Duarte, Jan 22 2018

Keywords

Examples

			Triangle begins:
       1;
       1,      1;
       3,      2,     3;
      16,      9,     9,    16;
     125,     64,    54,    64,   125;
    1296,    625,   480,   480,   625,  1296;
   16807,   7776,  5625,  5120,  5625,  7776,  16807;
  262144, 117649, 81648, 70000, 70000, 81648, 117649, 262144;
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[n - 1, k - 1] k^(k - 2)*(n + 1 - k)^(n - 1 - k), {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, Jan 22 2018 *)

Formula

T(n,k) = binomial(n-1, k-1)*k^(k-2)*(n+1-k)^(n-1-k).
T(n,k) = A298592(n,k) - A298592(n,k+1).
T(n,k) = (A298593(n,k) - A298593(n,k+1))/n.
T(n,k) = A298597(n,k)/n.
T(n,1) = A000272(n+2).
T(n,n) = A000272(n+2).
T(n,k) = T(n,n-k).

A298597 Number T(n,k) of times the value k appears on the parking functions of length n and such that if we replace that value k with k+1 we don't get a parking function.

Original entry on oeis.org

1, 2, 2, 9, 6, 9, 64, 36, 36, 64, 625, 320, 270, 320, 625, 7776, 3750, 2880, 2880, 3750, 7776, 117649, 54432, 39375, 35840, 39375, 54432, 117649, 2097152, 941192, 653184, 560000, 560000, 653184, 941192, 2097152, 43046721, 18874368, 12706092, 10450944, 9843750, 10450944, 12706092, 18874368, 43046721
Offset: 1

Views

Author

Rui Duarte, Jan 22 2018

Keywords

Examples

			Triangle begins:
        1;
        2,      2;
        9,      6,      9;
       64,     36,     36,     64;
      625,    320,    270,    320,    625;
     7776,   3750,   2880,   2880,   3750,   7776;
   117649,  54432,  39375,  35840,  39375,  54432, 117649;
  2097152, 941192, 653184, 560000, 560000, 653184, 941192, 2097152;
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[n Binomial[n - 1, k - 1] k^(k - 2)*(n + 1 - k)^(n - 1 - k), {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, Jan 22 2018 *)

Formula

T(n,k) = n*binomial(n-1, k-1)*k^(k-2)*(n+1-k)^(n-1-k).
T(n,k) = n*A298594(n,k).
T(n.k) = A298593(n,k)-A298593(n,k+1).
T(n,k) = n*(A298592(n,k)-A298592(n,k+1)).
T(n,1) = n*A000272(n+2).
T(n,n) = n*A000272(n+2).
T(n,1) = A000169(n).
T(n,n) = A000169(n).
T(n,k) = T(n,n-k).

A318047 a(n) = sum of values taken by all parking functions of length n.

Original entry on oeis.org

1, 8, 81, 1028, 15780, 284652, 5903464, 138407544, 3619892160, 104485268960, 3299177464704, 113120695539612, 4185473097734656, 166217602768452900, 7051983744002135040, 318324623296131263408, 15232941497754507165696, 770291040239888149405944, 41042353622873800536064000, 2298206207793743728251532020
Offset: 1

Views

Author

Yukun Yao, Aug 13 2018

Keywords

Examples

			Case n = 2: There are 3 parking functions of length 2: [1, 1], [1, 2], [2, 1]. Summing up all values gives 2 + 3 + 3 = 8, so a(2) = 8.
Case n = 3: There are 16 parking functions of length 3: [1, 1, 1], [1, 1, 2], [1, 1, 3], [1, 2, 1], [1, 2, 2], [1, 2, 3], [1, 3, 1], [1, 3, 2], [2, 1, 1], [2, 1, 2], [2, 1, 3], [2, 2, 1], [2, 3, 1], [3, 1, 1], [3, 1, 2], [3, 2, 1]. Summing up all values gives a total of 81, so a(3) = 81.
		

Crossrefs

Programs

  • Maple
    #Pnax(n,a,x): the sum of x^(sum of all entries in the parking function) over the set of a-parking functions of length n by recurrence relation.
    Pnax:=proc(n,a,x) local k:
    option remember:
    if n=0 then
      return 1:
    fi:
    if n>0 and a=0 then
      return 0:
    fi:
    return expand(x^n*add(binomial(n,k)*Pnax(n-k,a+k-1,x),k=0..n)):
    end:
    seq(subs(x = 1, diff(Pnax(n, 1, x), x)), n = 1 .. 20)
  • Mathematica
    T[n_, k_] := n Sum[Binomial[n-1, j-1] j^(j-2) (n-j+1)^(n-j-1), {j, k, n}];
    a[n_] := Sum[k T[n, k], {k, 1, n}];
    Array[a, 20] (* Jean-François Alcover, Aug 29 2018, after Andrew Howroyd *)
  • PARI
    \\ here T(n,k) is A298593.
    T(n,k)={n*sum(j=k, n, binomial(n-1, j-1)*j^(j-2)*(n+1-j)^(n-1-j))}
    a(n)={sum(k=1, n, k*T(n,k))} \\ Andrew Howroyd, Aug 17 2018

Formula

a(n) is the first derivative of P(n,1,x) evaluated at x = 1 where P(n,m,x) satisfies P(n,m,x) = x^n*Sum_{k=0..n} binomial(n,k)*P(n-k, m+k-1, x) with P(0,m,x) = 1 and P(n,0,x) = 0 for n > 0.
a(n) = Sum_{k=1..n} k*A298593(n, k). - Andrew Howroyd, Aug 17 2018

Extensions

Edited by Andrew Howroyd and N. J. A. Sloane, Aug 19 2018
Showing 1-4 of 4 results.