A298592 Triangle read by rows: T(n,k) = number of parking functions of length n whose lead number is k.
1, 2, 1, 8, 5, 3, 50, 34, 25, 16, 432, 307, 243, 189, 125, 4802, 3506, 2881, 2401, 1921, 1296, 65536, 48729, 40953, 35328, 30208, 24583, 16807, 1062882, 800738, 683089, 601441, 531441, 461441, 379793, 262144, 20000000, 15217031, 13119879, 11708091, 10546875, 9453125, 8291909, 6880121, 4782969
Offset: 1
Examples
Triangle begins: 1; 2, 1; 8, 5, 3; 50, 34, 25, 16; 432, 307, 243, 189, 125; 4802, 3506, 2881, 2401, 1921, 1296; 65536, 48729, 40953, 35328, 30208, 24583, 16807; 1062882, 800738, 683089, 601441, 531441, 461441, 379793, 262144; ...
Links
- Steve Butler, Kimberly Hadaway, Victoria Lenius, Preston Martens, and Marshall Moats, Lucky cars and lucky spots in parking functions, arXiv:2412.07873 [math.CO], 2024. See p. 6.
- D. Foata and J. Riordan, Mappings of acyclic and parking functions, J. Aeq. Math., 10 (1974) 10-22.
Programs
-
Mathematica
Table[Sum[Binomial[n - 1, j - 1] j^(j - 2)*(n + 1 - j)^(n - 1 - j), {j, k, n}], {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, Jan 22 2018 *)