A245698 Decimal expansion of the expected distance from a randomly selected point in an equilateral triangle of side length 1 to its center: (2*sqrt(3) + log(2+sqrt(3)))/18.
2, 6, 5, 6, 1, 4, 4, 1, 7, 3, 3, 6, 8, 0, 9, 5, 1, 6, 4, 2, 6, 6, 6, 3, 2, 7, 9, 4, 6, 2, 2, 0, 6, 2, 8, 7, 6, 6, 1, 8, 1, 0, 6, 9, 3, 2, 8, 2, 6, 8, 2, 0, 9, 6, 4, 3, 7, 7, 8, 2, 5, 6, 7, 5, 4, 5, 7, 9, 5, 9, 0, 1, 0, 6, 8, 5, 5, 8, 0, 0, 2, 7, 9, 0, 9, 1, 7, 2, 9, 9, 2, 7, 5, 8, 1, 1, 0, 5, 1, 9, 3, 9, 3, 1, 7, 6, 5, 1, 0, 7, 7, 5, 7, 8, 7, 9, 9, 1, 8, 7
Offset: 1
Examples
0.265614417336809516426663279462206287661810693282682096437...
Links
- Eric Weisstein's World of Mathematics, Triangle Point Picking
- Index entries for transcendental numbers
Crossrefs
Cf. A103712.
Programs
-
Mathematica
RealDigits[(2Sqrt[3]+Log[2+Sqrt[3]])/18,10,120][[1]] (* Harvey P. Dale, Aug 09 2014 *)
-
PARI
sqrt(3)/9 + log(sqrt(3)+2)/18 \\ Charles R Greathouse IV, May 15 2019
Formula
Also equal to (8*sqrt(3)+3*arcsinh(sqrt(3))+log(2+sqrt(3)))/72.