cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245704 Permutation of natural numbers: a(1) = 1, a(A014580(n)) = A000040(a(n)), a(A091242(n)) = A002808(a(n)), where A000040(n) = n-th prime, A002808(n) = n-th composite number, and A014580(n) and A091242(n) are binary codes for n-th irreducible and n-th reducible polynomial over GF(2), respectively.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 5, 9, 12, 15, 7, 10, 13, 16, 21, 25, 14, 18, 19, 22, 26, 33, 38, 24, 11, 28, 30, 34, 39, 49, 23, 55, 36, 20, 42, 45, 37, 50, 56, 69, 47, 35, 77, 52, 32, 60, 17, 64, 54, 70, 78, 94, 66, 51, 29, 105, 74, 48, 41, 84, 53, 27, 88, 76, 95, 106, 73, 125, 91, 72, 44, 140, 97, 100, 68, 58, 115, 75, 40
Offset: 1

Views

Author

Antti Karttunen, Aug 02 2014

Keywords

Comments

All the permutations A091203, A091205, A106443, A106445, A106447, A235042 share the same property that the binary representations of irreducible GF(2) polynomials (A014580) are mapped bijectively to the primes (A000040) but while they determine the mapping of corresponding reducible polynomials (A091242) to the composite numbers (A002808) by a simple multiplicative rule, this permutation employs index-recursion also in that case.

Crossrefs

Programs

Formula

a(1) = 1, after which, if A091225(n) is 1 [i.e. n is in A014580], then a(n) = A000040(a(A091226(n))), otherwise a(n) = A002808(a(A091245(n))).
As a composition of related permutations:
a(n) = A227413(A245701(n)).
a(n) = A245822(A091205(n)).
Other identities. For all n >= 1, the following holds:
a(A091230(n)) = A007097(n). [Maps iterates of A014580 to the iterates of primes. Permutation A091205 has the same property].
A010051(a(n)) = A091225(n). [After a(1)=1, maps binary representations of irreducible GF(2) polynomials (= A014580) to primes and the corresponding representations of reducible polynomials to composites].