A245713 Sorted imperfect powers b^p with b > 0, p > 2, with multiplicity.
1, 8, 16, 27, 32, 64, 64, 81, 125, 128, 216, 243, 256, 256, 343, 512, 512, 625, 729, 729, 1000, 1024, 1024, 1296, 1331, 1728, 2048, 2187, 2197, 2401, 2744, 3125, 3375, 4096, 4096, 4096, 4096, 4913, 5832, 6561, 6561, 6859, 7776, 8000, 8192, 9261
Offset: 1
Links
- Anatoly E. Voevudko, Table of n, a(n) for n = 1..11539
- American Mathematical Society, Beal Prize
- Alf van der Poorten, Remarks on the sequence of 'perfect' numbers
- Anatoly E. Voevudko, Description of all powers in b245713
- Eric W. Weisstein, World of Mathematics, Perfect Power
- Wikipedia, Beal's conjecture
Programs
-
Maple
N:= 10^5: # to get all terms <= N L:= [1, seq(seq(b^p, p=3..floor(log[b](N))),b=2..floor(N^(1/3)))]: sort(L); # Robert Israel, Nov 09 2015
-
Mathematica
mx = 10000; Join[{1}, Sort@ Flatten@ Table[b^p, {b, 2, Sqrt@ mx}, {p, 3, Log[b, mx]}]] (* Robert G. Wilson v, Nov 09 2015 *)
-
PARI
A245713(lim)={my(L=List(1),lim2=logint(lim,2));for(p=3,lim2, for(b=2,sqrtnint(lim,p),listput(L, b^p);));listsort(L); print(L);} \\ Anatoly E. Voevudko, Sep 21 2015
Comments