cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245713 Sorted imperfect powers b^p with b > 0, p > 2, with multiplicity.

Original entry on oeis.org

1, 8, 16, 27, 32, 64, 64, 81, 125, 128, 216, 243, 256, 256, 343, 512, 512, 625, 729, 729, 1000, 1024, 1024, 1296, 1331, 1728, 2048, 2187, 2197, 2401, 2744, 3125, 3375, 4096, 4096, 4096, 4096, 4913, 5832, 6561, 6561, 6859, 7776, 8000, 8192, 9261
Offset: 1

Views

Author

Anatoly E. Voevudko, Jul 30 2014

Keywords

Comments

No multiple terms for b=1.
This sequence strictly follows requirements of the Beal conjecture.
Less than 550 of these powers satisfy 196 Beal's conjecture equations.

Crossrefs

Programs

  • Maple
    N:= 10^5: # to get all terms <= N
    L:= [1, seq(seq(b^p, p=3..floor(log[b](N))),b=2..floor(N^(1/3)))]:
    sort(L); # Robert Israel, Nov 09 2015
  • Mathematica
    mx = 10000; Join[{1}, Sort@ Flatten@ Table[b^p, {b, 2, Sqrt@ mx}, {p, 3, Log[b, mx]}]] (* Robert G. Wilson v, Nov 09 2015 *)
  • PARI
    A245713(lim)={my(L=List(1),lim2=logint(lim,2));for(p=3,lim2, for(b=2,sqrtnint(lim,p),listput(L, b^p);));listsort(L); print(L);} \\ Anatoly E. Voevudko, Sep 21 2015