A245721 The set of 16 consecutive primes forming a 4 X 4 pandiagonal magic square with the smallest magic constant, 682775764735680 = A256234(1).
170693941183817, 170693941183847, 170693941183859, 170693941183861, 170693941183889, 170693941183891, 170693941183903, 170693941183907, 170693941183933, 170693941183937, 170693941183949, 170693941183951, 170693941183979, 170693941183981, 170693941183993, 170693941184023
Offset: 1
Examples
A pandiagonal magic square formed by these primes: 170693941183817 170693941183933 170693941183949 170693941183981 170693941183979 170693941183951 170693941183847 170693941183903 170693941183891 170693941183859 170693941184023 170693941183907 170693941183993 170693941183937 170693941183861 170693941183889 A Stanley antimagic square formed by these primes: 170693941183817 170693941183859 170693941183907 170693941183949 170693941183847 170693941183889 170693941183937 170693941183979 170693941183861 170693941183903 170693941183951 170693941183993 170693941183891 170693941183933 170693941183981 170693941184023
Crossrefs
Cf. A320874 (the square made of the set of primes given here).
Cf. A073519 or A320873, A073521, A073522 (3 X 3, 4 X 4 and 5 X 5 consecutive primes), A073523 and A320876 (6 X 6 consecutive primes, pandiagonal magic square).
Cf. A210710: Minimal index of a Stanley antimagic square of order n consisting of distinct primes.
Cf. A073520: Smallest magic sum of a magic square made of n^2 consecutive primes.
Cf. A104157: Smallest of n X n consecutive primes forming a magic square.
Cf. A256234: Magic sums of 4 X 4 pandiagonal magic squares of consecutive primes.
Comments