cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245727 Least number k >= 0 such that n concatenated with n + k is prime.

Original entry on oeis.org

0, 1, 4, 3, 4, 1, 2, 1, 2, 3, 6, 1, 6, 9, 8, 3, 4, 5, 12, 7, 8, 15, 10, 13, 6, 7, 2, 5, 10, 7, 6, 19, 10, 15, 4, 1, 2, 9, 4, 9, 12, 1, 6, 3, 2, 3, 4, 13, 2, 1, 2, 9, 28, 17, 2, 1, 22, 3, 22, 7, 2, 1, 4, 5, 4, 7, 12, 1, 2, 9, 6, 11, 20, 3, 2, 5, 12, 1, 14, 1, 10, 5, 4, 37, 12, 3, 16, 5, 10
Offset: 1

Views

Author

Derek Orr, Jul 30 2014

Keywords

Examples

			33 is not prime. 34 is not prime. 35 is not prime. 36 is not prime. 37 is prime. Since 7 is 4 more than 3, a(3) = 4.
		

Crossrefs

Cf. A228325.

Programs

  • Maple
    a:= proc(n) local j; for j from n do if isprime(n*10^(1+ilog10(j))+j) then return(j-n) fi od end proc:
    seq(a(n),n=1..100); # Robert Israel, Jul 30 2014
  • Mathematica
    lnk[n_]:=Module[{k=0,idn=IntegerDigits[n]},While[!PrimeQ[FromDigits[ Join[ idn, IntegerDigits[ n+k]]]],k++];k]; Array[lnk,90] (* Harvey P. Dale, Oct 05 2014 *)
  • PARI
    a(n) = for(k=n,10^4,if(isprime(eval(concat(Str(n),Str(k)))),return(k-n)))
    vector(150,n,a(n))
    
  • Python
    def a(n):
      for k in range(n,10**4):
        if isprime(str(n)+str(k)):
          return k-n
    n = 1
    while n < 150:
      print(a(n),end=', ')
      n += 1

Formula

a(n) = A228325(n) - n for n > 1.