A245733 Number T(n,k) of endofunctions on [n] such that at least one preimage with cardinality k exists and, if j is the largest value with a nonempty preimage, the preimage cardinality of i is >=k for all i<=j and equal to k for at least one i<=j; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 1, 2, 1, 14, 12, 0, 1, 181, 68, 6, 0, 1, 2584, 520, 20, 0, 0, 1, 41973, 4542, 120, 20, 0, 0, 1, 776250, 46550, 672, 70, 0, 0, 0, 1, 16231381, 540136, 5516, 112, 70, 0, 0, 0, 1, 380333228, 7045020, 40140, 1848, 252, 0, 0, 0, 0, 1
Offset: 0
Examples
T(2,0) = 1: (2,2). T(2,1) = 2: (1,2), (2,1). T(2,2) = 1: (1,1). T(3,1) = 12: (1,1,2), (1,2,1), (1,2,2), (1,2,3), (1,3,2), (2,1,1), (2,1,2), (2,1,3), (2,2,1), (2,3,1), (3,1,2), (3,2,1). T(3,3) = 1: (1,1,1). Triangle T(n,k) begins: 0 : 1; 1 : 0, 1; 2 : 1, 2, 1; 3 : 14, 12, 0, 1; 4 : 181, 68, 6, 0, 1; 5 : 2584, 520, 20, 0, 0, 1; 6 : 41973, 4542, 120, 20, 0, 0, 1; 7 : 776250, 46550, 672, 70, 0, 0, 0, 1; 8 : 16231381, 540136, 5516, 112, 70, 0, 0, 0, 1; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n=0, 1, add(b(n-j, k)*binomial(n, j), j=k..n)) end: g:= (n, k)-> `if`(k=0, n^n, `if`(n=0, 0, b(n, k))): T:= (n, k)-> g(n, k) -g(n, k+1): seq(seq(T(n, k), k=0..n), n=0..12);
-
Mathematica
b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n-j, k]*Binomial[n, j], {j, k, n}]]; g[n_, k_] := If[k == 0, n^n, If[n == 0, 0, b[n, k]]]; T[n_, k_] := g[n, k] - g[n, k+1]; T[0, 0] = 1; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 27 2015, after Alois P. Heinz *)
Comments