cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245733 Number T(n,k) of endofunctions on [n] such that at least one preimage with cardinality k exists and, if j is the largest value with a nonempty preimage, the preimage cardinality of i is >=k for all i<=j and equal to k for at least one i<=j; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 14, 12, 0, 1, 181, 68, 6, 0, 1, 2584, 520, 20, 0, 0, 1, 41973, 4542, 120, 20, 0, 0, 1, 776250, 46550, 672, 70, 0, 0, 0, 1, 16231381, 540136, 5516, 112, 70, 0, 0, 0, 1, 380333228, 7045020, 40140, 1848, 252, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 30 2014

Keywords

Comments

T(0,0) = 1 by convention.

Examples

			T(2,0) = 1: (2,2).
T(2,1) = 2: (1,2), (2,1).
T(2,2) = 1: (1,1).
T(3,1) = 12: (1,1,2), (1,2,1), (1,2,2), (1,2,3), (1,3,2), (2,1,1), (2,1,2), (2,1,3), (2,2,1), (2,3,1), (3,1,2), (3,2,1).
T(3,3) = 1: (1,1,1).
Triangle T(n,k) begins:
0 :         1;
1 :         0,      1;
2 :         1,      2,    1;
3 :        14,     12,    0,   1;
4 :       181,     68,    6,   0,  1;
5 :      2584,    520,   20,   0,  0, 1;
6 :     41973,   4542,  120,  20,  0, 0, 1;
7 :    776250,  46550,  672,  70,  0, 0, 0, 1;
8 :  16231381, 540136, 5516, 112, 70, 0, 0, 0, 1;
     ...
		

Crossrefs

Columns k=0-10 give: A133286 (for n>0), A245854, A245855, A245856, A245857, A245858, A245859, A245860, A245861, A245862, A245863.
Row sums give A000312.
T(2n,n) gives A000984(n).
Cf. A245732.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1,
          add(b(n-j, k)*binomial(n, j), j=k..n))
        end:
    g:= (n, k)-> `if`(k=0, n^n, `if`(n=0, 0, b(n, k))):
    T:= (n, k)-> g(n, k) -g(n, k+1):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n-j, k]*Binomial[n, j], {j, k, n}]]; g[n_, k_] := If[k == 0, n^n, If[n == 0, 0, b[n, k]]]; T[n_, k_] := g[n, k] - g[n, k+1]; T[0, 0] = 1; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 27 2015, after Alois P. Heinz *)

Formula

E.g.f. of column k=0: 1 +1/(1+LambertW(-x)) -1/(2-exp(x)); e.g.f. of column k>0: 1/(1-Sum_{j>=k} x^j/j!) - 1/(1-Sum_{j>=k+1} x^j/j!).
T(n,k) = A245732(n,k) - A245732(n,k+1).