A245732
Number T(n,k) of endofunctions on [n] such that at least one preimage with cardinality >=k exists and a nonempty preimage of j implies that all i<=j have preimages with cardinality >=k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 1, 1, 4, 3, 1, 27, 13, 1, 1, 256, 75, 7, 1, 1, 3125, 541, 21, 1, 1, 1, 46656, 4683, 141, 21, 1, 1, 1, 823543, 47293, 743, 71, 1, 1, 1, 1, 16777216, 545835, 5699, 183, 71, 1, 1, 1, 1, 387420489, 7087261, 42241, 2101, 253, 1, 1, 1, 1, 1
Offset: 0
Triangle T(n,k) begins:
0 : 1;
1 : 1, 1;
2 : 4, 3, 1;
3 : 27, 13, 1, 1;
4 : 256, 75, 7, 1, 1;
5 : 3125, 541, 21, 1, 1, 1;
6 : 46656, 4683, 141, 21, 1, 1, 1;
7 : 823543, 47293, 743, 71, 1, 1, 1, 1;
8 : 16777216, 545835, 5699, 183, 71, 1, 1, 1, 1;
-
b:= proc(n, k) option remember; `if`(n=0, 1,
add(b(n-j, k)*binomial(n, j), j=k..n))
end:
T:= (n, k)-> `if`(k=0, n^n, `if`(n=0, 0, b(n, k))):
seq(seq(T(n, k), k=0..n), n=0..12);
-
b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n-j, k]*Binomial[n, j], {j, k, n}]]; T[n_, k_] := If[k == 0, n^n, If[n == 0, 0, b[n, k]]]; T[0, 0] = 1; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 05 2015, after Alois P. Heinz *)
A133286
a(n) is the difference by which n^n overestimates the value of (1/2) Sum_{k>=0} k^n/2^k.
Original entry on oeis.org
0, 0, 1, 14, 181, 2584, 41973, 776250, 16231381, 380333228, 9897752437, 283689038038, 8888008880661, 302348248243872, 11101365482587573, 437663607189881522, 18441428419027570261, 827109891119307628276, 39343022540633280730101, 1978326854072994260712846
Offset: 0
Ramesh L. Srigiriraju (rsrigir(AT)vt.edu), Oct 16 2007
a(3) = 3^3 - (1/2) Sum_{k>=0} k^3/2^k = 27 - 1/2 * 26 = 27 - 13 = 14.
-
a:= n-> n^n -sum(k^n/2^k, k=0..infinity)/2:
seq(a(n), n=0..25); # Alois P. Heinz, Jul 29 2014
# second Maple program:
b:= proc(n) b(n):= `if`(n=0, 1, add(b(n-j)/j!, j=1..n)) end:
a:= n-> n^n- b(n)*n!:
seq(a(n), n=0..25); # Alois P. Heinz, Jul 29 2014
-
a[n_] := If[n==0, 0, n^n - HurwitzLerchPhi[1/2, -n, 0]/2];
a /@ Range[0, 25] (* Jean-François Alcover, Nov 10 2020 *)
A245854
Number of preferential arrangements of n labeled elements such that the minimal number of elements per rank equals 1.
Original entry on oeis.org
1, 2, 12, 68, 520, 4542, 46550, 540136, 7045020, 101865410, 1619046418, 28053492348, 526430246264, 10636085523910, 230214619661790, 5314695463338704, 130356558777712468, 3385311352838750538, 92797887464933030762, 2677623216872061223780, 81123642038690958720048
Offset: 1
-
b:= proc(n, k) option remember; `if`(n=0, 1,
add(b(n-j, k)*binomial(n, j), j=k..n))
end:
a:= n-> b(n, 1) -b(n, 2):
seq(a(n), n=1..25);
-
With[{nn=30},CoefficientList[Series[1/(2-Exp[x])-1/(2-Exp[x]+x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 29 2024 *)
A245855
Number of preferential arrangements of n labeled elements such that the minimal number of elements per rank equals 2.
Original entry on oeis.org
1, 0, 6, 20, 120, 672, 5516, 40140, 368640, 3521870, 37445298, 422339502, 5215454426, 68144100780, 954428684280, 14160968076584, 222769496190060, 3692874342747114, 64493471050666430, 1181830474135532130, 22692074431844298558, 455404848204906308984
Offset: 2
-
b:= proc(n, k) option remember; `if`(n=0, 1,
add(b(n-j, k)*binomial(n, j), j=k..n))
end:
a:= n-> b(n, 2) -b(n, 3):
seq(a(n), n=2..25);
A245856
Number of preferential arrangements of n labeled elements such that the minimal number of elements per rank equals 3.
Original entry on oeis.org
1, 0, 0, 20, 70, 112, 1848, 12840, 62700, 591800, 5484908, 40589276, 421291780, 4704380800, 46345716880, 533446290384, 6931113219780, 85313661653400, 1121432682942740, 16310909250477380, 237534778732260548, 3578871132644512672, 57980168196079811800
Offset: 3
-
b:= proc(n, k) option remember; `if`(n=0, 1,
add(b(n-j, k)*binomial(n, j), j=k..n))
end:
a:= n-> b(n, 3) -b(n, 4):
seq(a(n), n=3..30);
-
With[{nn=30},CoefficientList[Series[1/(2-Exp[x]+x+x^2/2)-1/(2-Exp[x]+ x+ x^2/2+ x^3/6),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Feb 14 2016 *)
A245857
Number of preferential arrangements of n labeled elements such that the minimal number of elements per rank equals 4.
Original entry on oeis.org
1, 0, 0, 0, 70, 252, 420, 660, 35640, 271700, 1389388, 5137860, 79463020, 905649500, 7336909980, 48400150764, 573924746400, 7735300382250, 85942063340210, 795156908528290, 9670781421636258, 143772253669334950, 1993964186469438950, 24015169625528033550
Offset: 4
-
b:= proc(n, k) option remember; `if`(n=0, 1,
add(b(n-j, k)*binomial(n, j), j=k..n))
end:
a:= n-> b(n, 4) -b(n, 5):
seq(a(n), n=4..30);
A245858
Number of preferential arrangements of n labeled elements such that the minimal number of elements per rank equals 5.
Original entry on oeis.org
1, 0, 0, 0, 0, 252, 924, 1584, 2574, 4004, 762762, 6062784, 31868200, 121314312, 399096216, 12936646128, 167685283332, 1429020461484, 9754485257594, 55756633204272, 905519956068420, 14816352889289380, 179362257853420980, 1745771827872126600
Offset: 5
-
b:= proc(n, k) option remember; `if`(n=0, 1,
add(b(n-j, k)*binomial(n, j), j=k..n))
end:
a:= n-> b(n, 5) -b(n, 6):
seq(a(n), n=5..30);
A245859
Number of preferential arrangements of n labeled elements such that the minimal number of elements per rank equals 6.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 924, 3432, 6006, 10010, 16016, 24752, 17190264, 139729800, 748339320, 2910015528, 9794896188, 30251595066, 2396910064472, 33228482071400, 291616291666700, 2036218597884900, 11895959650285620, 61536913327513260, 1662981928016982300
Offset: 6
-
b:= proc(n, k) option remember; `if`(n=0, 1,
add(b(n-j, k)*binomial(n, j), j=k..n))
end:
a:= n-> b(n, 6) -b(n, 7):
seq(a(n), n=6..35);
A245860
Number of preferential arrangements of n labeled elements such that the minimal number of elements per rank equals 7.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 3432, 12870, 22880, 38896, 63648, 100776, 155040, 399305520, 3292693008, 17879790324, 70676513424, 242216077400, 762341522800, 2264840592300, 478970960616720, 6869326015894680, 61426122596911800, 435982960069722000, 2589856033041531072
Offset: 7
-
b:= proc(n, k) option remember; `if`(n=0, 1,
add(b(n-j, k)*binomial(n, j), j=k..n))
end:
a:= n-> b(n, 7) -b(n, 8):
seq(a(n), n=7..35);
A245861
Number of preferential arrangements of n labeled elements such that the minimal number of elements per rank equals 8.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 12870, 48620, 87516, 151164, 251940, 406980, 639540, 980628, 9466982712, 78881427900, 432962644400, 1733914096200, 6029537213700, 19273224716460, 58178097911700, 168431757261300, 100033451495909100, 1461521434059544572
Offset: 8
-
b:= proc(n, k) option remember; `if`(n=0, 1,
add(b(n-j, k)*binomial(n, j), j=k..n))
end:
a:= n-> b(n, 8) -b(n, 9):
seq(a(n), n=8..35);
Showing 1-10 of 12 results.
Comments