cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A245732 Number T(n,k) of endofunctions on [n] such that at least one preimage with cardinality >=k exists and a nonempty preimage of j implies that all i<=j have preimages with cardinality >=k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 4, 3, 1, 27, 13, 1, 1, 256, 75, 7, 1, 1, 3125, 541, 21, 1, 1, 1, 46656, 4683, 141, 21, 1, 1, 1, 823543, 47293, 743, 71, 1, 1, 1, 1, 16777216, 545835, 5699, 183, 71, 1, 1, 1, 1, 387420489, 7087261, 42241, 2101, 253, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 30 2014

Keywords

Comments

T(0,0) = 1 by convention.
In general, column k > 1 is asymptotic to n! / ((1+r^(k-1)/(k-1)!) * r^(n+1)), where r is the root of the equation 2 - exp(r) + Sum_{j=1..k-1} r^j/j! = 0. - Vaclav Kotesovec, Aug 02 2014

Examples

			Triangle T(n,k) begins:
0 :         1;
1 :         1,      1;
2 :         4,      3,    1;
3 :        27,     13,    1,   1;
4 :       256,     75,    7,   1,  1;
5 :      3125,    541,   21,   1,  1, 1;
6 :     46656,   4683,  141,  21,  1, 1, 1;
7 :    823543,  47293,  743,  71,  1, 1, 1, 1;
8 :  16777216, 545835, 5699, 183, 71, 1, 1, 1, 1;
		

Crossrefs

Column k=0 gives A000312.
Columns k=1-10 give (for n>0): A000670, A032032, A102233, A232475, A245790, A245791, A245792, A245793, A245794, A245795.
T(2n,n) gives A244174(n) or 1+A007318(2n,n) = 1+A000984(n) for n>0.
Cf. A245733.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1,
          add(b(n-j, k)*binomial(n, j), j=k..n))
        end:
    T:= (n, k)-> `if`(k=0, n^n, `if`(n=0, 0, b(n, k))):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n-j, k]*Binomial[n, j], {j, k, n}]]; T[n_, k_] := If[k == 0, n^n, If[n == 0, 0, b[n, k]]]; T[0, 0] = 1; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 05 2015, after Alois P. Heinz *)

Formula

E.g.f. (for column k > 0): 1/(2 -exp(x) +Sum_{j=1..k-1} x^j/j!) -1. - Vaclav Kotesovec, Aug 02 2014

A133286 a(n) is the difference by which n^n overestimates the value of (1/2) Sum_{k>=0} k^n/2^k.

Original entry on oeis.org

0, 0, 1, 14, 181, 2584, 41973, 776250, 16231381, 380333228, 9897752437, 283689038038, 8888008880661, 302348248243872, 11101365482587573, 437663607189881522, 18441428419027570261, 827109891119307628276, 39343022540633280730101, 1978326854072994260712846
Offset: 0

Views

Author

Ramesh L. Srigiriraju (rsrigir(AT)vt.edu), Oct 16 2007

Keywords

Examples

			a(3) = 3^3 - (1/2) Sum_{k>=0} k^3/2^k = 27 - 1/2 * 26 = 27 - 13 = 14.
		

Crossrefs

Cf. column k=0 of A245733.

Programs

  • Maple
    a:= n-> n^n -sum(k^n/2^k, k=0..infinity)/2:
    seq(a(n), n=0..25);  # Alois P. Heinz, Jul 29 2014
    # second Maple program:
    b:= proc(n) b(n):= `if`(n=0, 1, add(b(n-j)/j!, j=1..n)) end:
    a:= n-> n^n- b(n)*n!:
    seq(a(n), n=0..25);  # Alois P. Heinz, Jul 29 2014
  • Mathematica
    a[n_] := If[n==0, 0, n^n - HurwitzLerchPhi[1/2, -n, 0]/2];
    a /@ Range[0, 25] (* Jean-François Alcover, Nov 10 2020 *)

Formula

a(n) = n^n - (1/2) Sum_{k>=0} k^n/2^k.
a(n) = A000312(n) - A000670(n). - Alois P. Heinz, Jul 29 2014
E.g.f.: 1/(1+LambertW(-x)) - 1/(2-exp(x)). - Alois P. Heinz, Aug 03 2014

Extensions

More terms and a(14)-a(17) corrected by Alois P. Heinz, Jul 29 2014

A245854 Number of preferential arrangements of n labeled elements such that the minimal number of elements per rank equals 1.

Original entry on oeis.org

1, 2, 12, 68, 520, 4542, 46550, 540136, 7045020, 101865410, 1619046418, 28053492348, 526430246264, 10636085523910, 230214619661790, 5314695463338704, 130356558777712468, 3385311352838750538, 92797887464933030762, 2677623216872061223780, 81123642038690958720048
Offset: 1

Views

Author

Alois P. Heinz, Aug 04 2014

Keywords

Crossrefs

Column k=1 of A245733.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1,
          add(b(n-j, k)*binomial(n, j), j=k..n))
        end:
    a:= n-> b(n, 1) -b(n, 2):
    seq(a(n), n=1..25);
  • Mathematica
    With[{nn=30},CoefficientList[Series[1/(2-Exp[x])-1/(2-Exp[x]+x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 29 2024 *)

Formula

E.g.f.: 1/(2-exp(x))-1/(2-exp(x)+x).
a(n) = A000670(n) - A032032(n) = A245732(n,1) - A245732(n,2).

A245855 Number of preferential arrangements of n labeled elements such that the minimal number of elements per rank equals 2.

Original entry on oeis.org

1, 0, 6, 20, 120, 672, 5516, 40140, 368640, 3521870, 37445298, 422339502, 5215454426, 68144100780, 954428684280, 14160968076584, 222769496190060, 3692874342747114, 64493471050666430, 1181830474135532130, 22692074431844298558, 455404848204906308984
Offset: 2

Views

Author

Alois P. Heinz, Aug 04 2014

Keywords

Crossrefs

Column k=2 of A245733.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1,
          add(b(n-j, k)*binomial(n, j), j=k..n))
        end:
    a:= n-> b(n, 2) -b(n, 3):
    seq(a(n), n=2..25);

Formula

E.g.f.: 1/(2-exp(x)+x) -1/(2-exp(x)+x+x^2/2).
a(n) = A032032(n) - A102233(n) = A245732(n,2) - A245732(n,3).

A245856 Number of preferential arrangements of n labeled elements such that the minimal number of elements per rank equals 3.

Original entry on oeis.org

1, 0, 0, 20, 70, 112, 1848, 12840, 62700, 591800, 5484908, 40589276, 421291780, 4704380800, 46345716880, 533446290384, 6931113219780, 85313661653400, 1121432682942740, 16310909250477380, 237534778732260548, 3578871132644512672, 57980168196079811800
Offset: 3

Views

Author

Alois P. Heinz, Aug 04 2014

Keywords

Crossrefs

Column k=3 of A245733.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1,
          add(b(n-j, k)*binomial(n, j), j=k..n))
        end:
    a:= n-> b(n, 3) -b(n, 4):
    seq(a(n), n=3..30);
  • Mathematica
    With[{nn=30},CoefficientList[Series[1/(2-Exp[x]+x+x^2/2)-1/(2-Exp[x]+ x+ x^2/2+ x^3/6),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Feb 14 2016 *)

Formula

E.g.f.: 1/(2-exp(x)+x+x^2/2)-1/(2-exp(x)+x+x^2/2+x^3/6).
a(n) = A102233(n) - A232475(n) = A245732(n,3) - A245732(n,4).

A245857 Number of preferential arrangements of n labeled elements such that the minimal number of elements per rank equals 4.

Original entry on oeis.org

1, 0, 0, 0, 70, 252, 420, 660, 35640, 271700, 1389388, 5137860, 79463020, 905649500, 7336909980, 48400150764, 573924746400, 7735300382250, 85942063340210, 795156908528290, 9670781421636258, 143772253669334950, 1993964186469438950, 24015169625528033550
Offset: 4

Views

Author

Alois P. Heinz, Aug 04 2014

Keywords

Crossrefs

Column k=4 of A245733.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1,
          add(b(n-j, k)*binomial(n, j), j=k..n))
        end:
    a:= n-> b(n, 4) -b(n, 5):
    seq(a(n), n=4..30);

Formula

E.g.f.: 1/(1-Sum_{j>=4} x^j/j!) - 1/(1-Sum_{j>=5} x^j/j!).
a(n) = A232475(n) - A245790(n) = A245732(n,4) - A245732(n,5).

A245858 Number of preferential arrangements of n labeled elements such that the minimal number of elements per rank equals 5.

Original entry on oeis.org

1, 0, 0, 0, 0, 252, 924, 1584, 2574, 4004, 762762, 6062784, 31868200, 121314312, 399096216, 12936646128, 167685283332, 1429020461484, 9754485257594, 55756633204272, 905519956068420, 14816352889289380, 179362257853420980, 1745771827872126600
Offset: 5

Views

Author

Alois P. Heinz, Aug 04 2014

Keywords

Crossrefs

Column k=5 of A245733.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1,
          add(b(n-j, k)*binomial(n, j), j=k..n))
        end:
    a:= n-> b(n, 5) -b(n, 6):
    seq(a(n), n=5..30);

Formula

E.g.f.: 1/(1-Sum_{j>=5} x^j/j!) - 1/(1-Sum_{j>=6} x^j/j!).
a(n) = A245790(n) - A245791(n) = A245732(n,5) - A245732(n,6).

A245859 Number of preferential arrangements of n labeled elements such that the minimal number of elements per rank equals 6.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 924, 3432, 6006, 10010, 16016, 24752, 17190264, 139729800, 748339320, 2910015528, 9794896188, 30251595066, 2396910064472, 33228482071400, 291616291666700, 2036218597884900, 11895959650285620, 61536913327513260, 1662981928016982300
Offset: 6

Views

Author

Alois P. Heinz, Aug 04 2014

Keywords

Crossrefs

Column k=6 of A245733.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1,
          add(b(n-j, k)*binomial(n, j), j=k..n))
        end:
    a:= n-> b(n, 6) -b(n, 7):
    seq(a(n), n=6..35);

Formula

E.g.f.: 1/(1-Sum_{j>=6} x^j/j!) - 1/(1-Sum_{j>=7} x^j/j!).
a(n) = A245791(n) - A245792(n) = A245732(n,6) - A245732(n,7).

A245860 Number of preferential arrangements of n labeled elements such that the minimal number of elements per rank equals 7.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 3432, 12870, 22880, 38896, 63648, 100776, 155040, 399305520, 3292693008, 17879790324, 70676513424, 242216077400, 762341522800, 2264840592300, 478970960616720, 6869326015894680, 61426122596911800, 435982960069722000, 2589856033041531072
Offset: 7

Views

Author

Alois P. Heinz, Aug 04 2014

Keywords

Crossrefs

Column k=7 of A245733.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1,
          add(b(n-j, k)*binomial(n, j), j=k..n))
        end:
    a:= n-> b(n, 7) -b(n, 8):
    seq(a(n), n=7..35);

Formula

E.g.f.: 1/(1-Sum_{j>=7} x^j/j!) - 1/(1-Sum_{j>=8} x^j/j!).
a(n) = A245792(n) - A245793(n) = A245732(n,7) - A245732(n,8).

A245861 Number of preferential arrangements of n labeled elements such that the minimal number of elements per rank equals 8.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 12870, 48620, 87516, 151164, 251940, 406980, 639540, 980628, 9466982712, 78881427900, 432962644400, 1733914096200, 6029537213700, 19273224716460, 58178097911700, 168431757261300, 100033451495909100, 1461521434059544572
Offset: 8

Views

Author

Alois P. Heinz, Aug 04 2014

Keywords

Crossrefs

Column k=8 of A245733.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1,
          add(b(n-j, k)*binomial(n, j), j=k..n))
        end:
    a:= n-> b(n, 8) -b(n, 9):
    seq(a(n), n=8..35);

Formula

E.g.f.: 1/(1-Sum_{j>=8} x^j/j!) - 1/(1-Sum_{j>=9} x^j/j!).
a(n) = A245793(n) - A245794(n) = A245732(n,8) - A245732(n,9).
Showing 1-10 of 12 results. Next