cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245734 G.f. A(x) satisfies 0 = A(0) and 0 = f(x, A(x)) where f(u, v) = (v - u) * (1 + u*v) - v * (v + u).

Original entry on oeis.org

0, 1, 2, 6, 20, 74, 294, 1228, 5318, 23662, 107512, 496726, 2326462, 11020424, 52706138, 254148326, 1234240140, 6031310162, 29635011990, 146323849876, 725635937678, 3612656833694, 18049975590512, 90474958563374, 454841633027198, 2292796383312656
Offset: 0

Views

Author

Michael Somos, Jul 30 2014

Keywords

Examples

			G.f. = x + 2*x^2 + 6*x^3 + 20*x^4 + 74*x^5 + 294*x^6 + 1228*x^7 + 5318*x^8 + ...
		

Crossrefs

Cf. A245735.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-x-x^2 -Sqrt(1-6*x+3*x^2+2*x^3+x^4))/(2*(1-x)))); // G. C. Greubel, Aug 06 2018
  • Mathematica
    CoefficientList[Series[(1-x-x^2 -Sqrt[1-6*x+3*x^2+2*x^3+x^4])/(2*(1-x)), {x, 0, 50}], x] (* G. C. Greubel, Aug 06 2018 *)
  • PARI
    {a(n) = my(A); n++; A = O(x); if( n<0, for(k=0, -n/2, A = x / (1 + (x - x^2) + (x - x^2) * A)), for(k=1, n, A = x / (1 - (x + x^2) - (1 - x) * A));); polcoeff(A, abs(n)) };
    
  • PARI
    {a(n) = polcoeff( if( n<0, ((-1 - x + x^2) + sqrt(1 + 2*x + 3*x^2 - 6*x^3 + x^4 + x^2 * O(x^-n) )) / (2 * (x - x^2)), ((1 - x - x^2) - sqrt(1 - 6*x + 3*x^2 + 2*x^3 + x^4 + x * O(x^n) )) / (2 * (1 - x))), abs(n))};
    

Formula

G.f.: (1 - x - x^2 - sqrt(1 - 6*x + 3*x^2 + 2*x^3 + x^4)) / (2 * (1 - x)).
G.f.: x / (1 - x - x^2 - (1 - x) / (1 - x - x^2 - (1 - x) / ...)) continued fraction.
a(n) = A245735(-n) for all n in Z.
0 = a(n)*(n-1) + a(n+1)*(n+2) + a(n+2)*(n+5) + a(n+3)*(-9*n-27) + a(n+4)*(7*n+26) + a(n+5)*(-n-5) for all n in Z.
0 = a(n)*(+a(n+1) +4*a(n+2) +7*a(n+3) -45*a(n+4) +40*a(n+5) -7*a(n+6)) + a(n+1)*(-2*a(n+1) -4*a(n+2) +31*a(n+3) -44*a(n+4) +24*a(n+5) -4*a(n+6)) + a(n+2)*(-2*a(n+2) +a(n+3) +4*a(n+4) -a(n+6)) +a(n+3)*(-27*a(n+3) +97*a(n+4) -109*a(n+5) +27*a(n+6)) +a(n+4)*(-18*a(n+4) +40*a(n+5) -16*a(n+6)) +a(n+5)*(+2*a(n+5) +a(n+6)) for all n in Z