cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245738 Number of compositions of n into parts 1 and 2 with both parts present.

Original entry on oeis.org

2, 3, 7, 11, 20, 32, 54, 87, 143, 231, 376, 608, 986, 1595, 2583, 4179, 6764, 10944, 17710, 28655, 46367, 75023, 121392, 196416, 317810, 514227, 832039, 1346267, 2178308, 3524576, 5702886, 9227463, 14930351, 24157815, 39088168, 63245984, 102334154, 165580139, 267914295, 433494435, 701408732, 1134903168, 1836311902
Offset: 3

Views

Author

David Neil McGrath, Jul 31 2014

Keywords

Examples

			a(9) = 54. The tuples are (22221) = 5!/4! = 5, (222111) = 6!/3!/3! = 20, (2211111) = 7!/5!/2! = 21, (21111111) = 8!/7! = 8.
		

Crossrefs

Column k=2 of A373118.

Programs

  • Mathematica
    LinearRecurrence[{1,2,-1,-1},{2,3,7,11},50] (* Harvey P. Dale, Dec 20 2014 *)
  • PARI
    Vec(1+1/(1-x-x^2)-1/(1-x)-1/(1-x^2)+O(x^66)) \\ Joerg Arndt, Aug 04 2014

Formula

G.f.: 1+1/(1-x-x^2)-1/(1-x)-1/(1-x^2).
a(n) = A052952(n-4)+2*A052952(n-3). - R. J. Mathar, Aug 05 2014
From Colin Barker, Jul 13 2017: (Start)
a(n) = (-20 + sqrt(5)*(-(1-sqrt(5))^(1+n) + (1+sqrt(5))^(1+n))/2^n) / 10 for n even.
a(n) = (-10 + sqrt(5)*(-(1-sqrt(5))^(1+n) + (1+sqrt(5))^(1+n))/2^n) / 10 for n odd.
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4) for n>6. (End)
a(n) = Sum_{i=1..floor((n-1)/2)} C(n-i,i). - Wesley Ivan Hurt, Sep 19 2017
a(n) = A000045(n+1) - A000034(n+1). - J. M. Bergot and Robert Israel, Oct 11 2021