A245770 Prime sieve of Pi.
1, 9, 6, 5, 93, 84626, 3, 2, 502884, 69399, 5105820, 4944, 2, 816406286, 986, 4825342, 70, 9, 480865, 2, 66, 93, 55058, 25, 4081284, 174, 270, 85, 555964462, 4895, 9644288, 7566, 344, 28475648, 8, 65, 201, 45648, 23, 4543, 393, 2602, 412, 724, 660, 55, 74881, 20962, 25, 1715364, 892, 600
Offset: 1
Examples
Find the first occurrence of prime 2 in the digits of Pi (only 25 digits in this illustration): 3141592653589793238462643..., and replace it with a space: 314159 653589793238462643... Repeat the process with 3: 14159 653589793238462643... Then 5: 141 9 653589793238462643... Then 7: 141 9 653589 93238462643... Then 11, 13, 17, etc., until the first occurrence of every prime is eliminated from the digits of Pi. 1 9 6 5 93 84626 ... Then consolidate gaps between the remaining digits into a single comma: 1,9,6,5,93,84626,... to produce the first terms in the prime sieve of Pi.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..1029 (first 422 terms from Manfred Scheucher)
- Manfred Scheucher, Sage Script (Note: should also run in pure python with a few modifications)
Programs
-
Python
def arccot(x, unity): sum = xpower = unity // x n = 3 sign = -1 while 1: xpower = xpower // (x*x) term = xpower // n if not term: break sum += sign * term sign = -sign n += 2 return sum def pi(digits): unity = 10**(digits + 10) pi = 4 * (4*arccot(5, unity) - arccot(239, unity)) return pi // 10**10 def primes(n): """ Returns a list of primes < n """ sieve = [True] * n for i in range(3,int(n**0.5)+1,2): if sieve[i]: sieve[i*i::2*i]=[False]*((n-i*i-1)/(2*i)+1) return [2] + [i for i in range(3,n,2) if sieve[i]] a = pi(370) b = primes(100000000) y = str(a) for x in b: if str(x) in y: y = y.replace(str(x)," ",1)#replace first occurrence only while " " in y: y = y.replace(" "," ")#replace long chains of spaces with a single space z = y.split(" ")#split terms into a list z = filter(None, z)#remove null terms f = map(int,z)#convert to integers print(f[0:-1]) # David Consiglio, Jr., Jan 03 2015
Extensions
a(14) corrected by Manfred Scheucher, May 25 2015