A245778 Numbers n such that k(n) = n/tau(n) - sigma(n)/n is an integer.
1, 672, 4680, 30240, 435708, 23569920, 45532800, 4138364160, 14182439040, 53798734080, 153003540480, 403031236608, 518666803200
Offset: 1
Examples
672 is in sequence because 672 / tau(672) - sigma(672) / 672 = 672 / 24 - 2016 / 672 = 25 (integer).
Programs
-
Magma
[n: n in [1..100000] | (Denominator((n/(#[d: d in Divisors(n)])) - (SumOfDivisors(n)/n)) eq 1)]
-
Maple
select(n -> type(n/numtheory:-tau(n) - numtheory:-sigma(n)/n,integer), [$1..10^8]); # Robert Israel, Aug 03 2014
-
PARI
for(n=1,10^8,s=n/numdiv(n);t=sigma(n)/n;if(floor(s-t)==s-t,print1(n,", "))) \\ Derek Orr, Aug 01 2014
Formula
A245777(a(n)) = 1.
Extensions
a(8)-a(13) from Giovanni Resta, Jul 13 2015
Comments