cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245778 Numbers n such that k(n) = n/tau(n) - sigma(n)/n is an integer.

Original entry on oeis.org

1, 672, 4680, 30240, 435708, 23569920, 45532800, 4138364160, 14182439040, 53798734080, 153003540480, 403031236608, 518666803200
Offset: 1

Views

Author

Jaroslav Krizek, Aug 01 2014

Keywords

Comments

Numbers n such that A245776(n) / A245777(n) = (n / A000005(n) - A000203(n) / n) is an integer.
Sequence of integers k(n): 0, 25, 94, 311, 4031, 73652, 118571, …
Conjecture: subsequence of A216793.
Refactorable multiply-perfect numbers (A245782) are members of this sequence.
a(14) > 10^13. - Giovanni Resta, Jul 13 2015
The numbers 13661860101120 and 740344994887680 are also terms. - Giovanni Resta, Nov 14 2019

Examples

			672 is in sequence because 672 / tau(672) - sigma(672) / 672 = 672 / 24 - 2016 / 672 = 25 (integer).
		

Crossrefs

Programs

  • Magma
    [n: n in [1..100000] | (Denominator((n/(#[d: d in Divisors(n)])) - (SumOfDivisors(n)/n)) eq 1)]
    
  • Maple
    select(n -> type(n/numtheory:-tau(n) - numtheory:-sigma(n)/n,integer), [$1..10^8]); # Robert Israel, Aug 03 2014
  • PARI
    for(n=1,10^8,s=n/numdiv(n);t=sigma(n)/n;if(floor(s-t)==s-t,print1(n,", "))) \\ Derek Orr, Aug 01 2014

Formula

A245777(a(n)) = 1.

Extensions

a(8)-a(13) from Giovanni Resta, Jul 13 2015